This repository has been archived by the owner on Mar 31, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathres_cifar.m
179 lines (157 loc) · 6.03 KB
/
res_cifar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
function [net, info] = res_cifar(m, varargin)
% res_cifar(20, 'modelType', 'resnet', 'reLUafterSum', false,...
% 'expDir', 'data/exp/cifar-resNOrelu-20', 'gpus', [2])
setup;
opts.modelType = 'resnet' ;
opts.preActivation = false;
opts.reLUafterSum = true;
opts.shortcutBN = false;
[opts, varargin] = vl_argparse(opts, varargin) ;
if opts.preActivation ,
opts.expDir = fullfile('exp', ...
sprintf('cifar-%s-%d', opts.modelType,m)) ;
else
opts.expDir = fullfile('exp', ...
sprintf('cifar-resnet-Pre-%d',m)) ;
end
opts.dataDir = fullfile('data','cifar') ;
[opts, varargin] = vl_argparse(opts, varargin) ;
opts.imdbPath = fullfile(opts.dataDir, 'imdb.mat');
opts.whitenData = true;
opts.contrastNormalization = true;
opts.meanType = 'image'; % 'pixel' | 'image'
opts.border = [4 4 4 4]; % tblr
opts.gpus = [];
opts.checkpointFn = [];
opts = vl_argparse(opts, varargin) ;
if numel(opts.border)~=4,
assert(numel(opts.border)==1);
opts.border = ones(1,4) * opts.border;
end
% -------------------------------------------------------------------------
% Prepare model and data
% -------------------------------------------------------------------------
if opts.preActivation ,
net = res_cifar_preactivation_init(m) ;
else
net = res_cifar_init(m, 'networkType', opts.modelType, ...
'reLUafterSum', opts.reLUafterSum) ;
end
if exist(opts.imdbPath, 'file')
imdb = load(opts.imdbPath) ;
if ~strcmpi(imdb.meta.meanType, opts.meanType) ...
|| xor(imdb.meta.whitenData, opts.whitenData) ...
|| xor(imdb.meta.contrastNormalization, opts.contrastNormalization);
clear imdb;
end
end
if ~exist('imdb', 'var'),
imdb = getCifarImdb(opts) ;
mkdir(opts.expDir) ;
save(opts.imdbPath, '-struct', 'imdb') ;
end
net.meta.classes.name = imdb.meta.classes(:)' ;
net.meta.dataMean = imdb.meta.dataMean;
augData = zeros(size(imdb.images.data) + [sum(opts.border(1:2)) ...
sum(opts.border(3:4)) 0 0], 'like', imdb.images.data);
augData(opts.border(1)+1:end-opts.border(2), ...
opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.data;
imdb.images.augData = augData;
% -------------------------------------------------------------------------
% Train
% -------------------------------------------------------------------------
trainfn = @cnn_train_dag_check;
rng('default');
[net, info] = trainfn(net, imdb, getBatch(opts), ...
'expDir', opts.expDir, ...
net.meta.trainOpts, ...
'gpus', opts.gpus, ...
'val', find(imdb.images.set == 3), ...
'derOutputs', {'loss', 1}, ...
'checkpointFn', opts.checkpointFn) ;
% -------------------------------------------------------------------------
function fn = getBatch(opts)
% -------------------------------------------------------------------------
bopts = struct('numGpus', numel(opts.gpus)) ;
fn = @(x,y) getDagNNBatch(bopts,x,y) ;
% -------------------------------------------------------------------------
function inputs = getDagNNBatch(opts, imdb, batch)
% -------------------------------------------------------------------------
if imdb.images.set(batch(1))==1, % training
sz0 = size(imdb.images.augData);
sz = size(imdb.images.data);
loc = [randi(sz0(1)-sz(1)+1) randi(sz0(2)-sz(2)+1)];
images = imdb.images.augData(loc(1):loc(1)+sz(1)-1, ...
loc(2):loc(2)+sz(2)-1, :, batch);
if rand > 0.5, images=fliplr(images) ; end
else % validating / testing
images = imdb.images.data(:,:,:,batch);
end
labels = imdb.images.labels(1,batch) ;
if opts.numGpus > 0
images = gpuArray(images) ;
end
inputs = {'image', images, 'label', labels} ;
% -------------------------------------------------------------------------
function imdb = getCifarImdb(opts)
% -------------------------------------------------------------------------
% Preapre the imdb structure, returns image data with mean image subtracted
unpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat');
files = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ...
{'test_batch.mat'}];
files = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false);
file_set = uint8([ones(1, 5), 3]);
if any(cellfun(@(fn) ~exist(fn, 'file'), files))
url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ;
fprintf('downloading %s\n', url) ;
untar(url, opts.dataDir) ;
end
data = cell(1, numel(files));
labels = cell(1, numel(files));
sets = cell(1, numel(files));
for fi = 1:numel(files)
fd = load(files{fi}) ;
data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ;
labels{fi} = fd.labels' + 1; % Index from 1
sets{fi} = repmat(file_set(fi), size(labels{fi}));
end
set = cat(2, sets{:});
data = single(cat(4, data{:}));
% remove mean
dataMean = mean(data(:,:,:,set == 1), 4);
if strcmpi(opts.meanType, 'pixel'),
dataMean = mean(mean(dataMean, 1), 2);
elseif ~strcmpi(opts.meanType, 'image'),
error('Unknown option: %s', opts.meanType);
end
data = bsxfun(@minus, data, dataMean);
% normalize by image mean and std as suggested in `An Analysis of
% Single-Layer Networks in Unsupervised Feature Learning` Adam
% Coates, Honglak Lee, Andrew Y. Ng
if opts.contrastNormalization
z = reshape(data,[],60000) ;
z = bsxfun(@minus, z, mean(z,1)) ;
n = std(z,0,1) ;
z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ;
data = reshape(z, 32, 32, 3, []) ;
end
if opts.whitenData
z = reshape(data,[],60000) ;
W = z(:,set == 1)*z(:,set == 1)'/60000 ;
[V,D] = eig(W) ;
% the scale is selected to approximately preserve the norm of W
d2 = diag(D) ;
en = sqrt(mean(d2)) ;
z = V*diag(en./max(sqrt(d2), 10))*V'*z ;
data = reshape(z, 32, 32, 3, []) ;
end
clNames = load(fullfile(unpackPath, 'batches.meta.mat'));
imdb.images.data = data ;
imdb.images.labels = single(cat(2, labels{:})) ;
imdb.images.set = set;
imdb.meta.sets = {'train', 'val', 'test'} ;
imdb.meta.classes = clNames.label_names;
imdb.meta.dataMean = dataMean;
imdb.meta.meanType = opts.meanType;
imdb.meta.whitenData = opts.whitenData;
imdb.meta.contrastNormalization = opts.contrastNormalization;