-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_new.py
139 lines (117 loc) · 5.24 KB
/
dataset_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from torch.utils.data import Dataset
# from PIL import Image
import torch
# import config
# import torchvision.transforms as transforms
import numpy as np
# import os.path as ops
import json
import cv2
import os
import copy
import imageio as io
shape = (256, 128)
root_path = '/media/lab9102/FA0DAF2C6CB5A0CE/tusimple/train_set/'
root_path_test = '/media/lab9102/FA0DAF2C6CB5A0CE/tusimple/test_set/'
list1 = [1, 5, 10, 15, 20] #index-1
# list1 = [2, 5, 9, 14, 20]#index-2
# list1 = [4, 8, 12, 16, 20]#index-3
# list1 = [6, 8, 11, 15, 20]#index-4
# list1 = [8, 11, 14, 17, 20]#index-5
# list1 = [10, 11, 13, 16, 20]#index-6
# list1 = [12, 14, 16, 18, 20]#index-7
def readTxt(label_file):
json_gt = []
json_gt += [json.loads(line) for line in open(label_file)]
return json_gt
def readTxttest(label_file):
json_gt = []
json_gt += [json.loads(line) for line in open(label_file)]
return json_gt
class RoadSequenceDataset(Dataset):
def __init__(self, file_path, transforms):
self.img_list = readTxt(file_path)
self.dataset_size = len(self.img_list)
self.transforms = transforms
def __len__(self):
return self.dataset_size
def __getitem__(self, idx):
gt = self.img_list[idx]
gt_lanes = gt['lanes']
y_samples = gt['h_samples']
raw_file = gt['raw_file']
label_name = raw_file.split('/')[0] + '_' + raw_file.split('/')[1] + '_' + raw_file.split('/')[2] + '_' + raw_file.split('/')[3][:-4]
data = []
for i in range(5):
new_file = raw_file[:-6] + str(list1[i]) + '.jpg'
img_name = os.path.join(root_path_test, new_file)
img = io.imread(img_name)
img = cv2.resize(img, shape, interpolation=cv2.INTER_CUBIC) # shape = (320, 192)
img = img.astype('float32') / 255.0
img = img.transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img1 = torch.from_numpy(img)
data.append(torch.unsqueeze(img1, dim=0))
data = torch.cat(data, 0)
gt_lanes_vis = [[(x, y) for (x, y) in zip(lane, y_samples) if x >= 0] for lane in gt_lanes]
mask = np.zeros((128, 256), dtype='float32') ##shape = (192, 320)
for lane in gt_lanes_vis:
if not lane: continue
lane = np.array([lane], dtype='float32')
lane *= [256, 128] # shape = (224, 224)
lane /= [1280, 720]
lane = lane.astype('int32')
lane_lable = lane_lable.astype('int32')
cv2.polylines(mask, lane, isClosed=False, color=1, thickness=1)
mask1 = mask1 * 255
mask = mask[None, ...] # mask.shape(1, 192, 320)
mask = np.ascontiguousarray(mask)
label = torch.from_numpy(mask)
label = torch.squeeze(label)
tmp_file_path = root_path_test + new_file
sample = {'data': data, 'label': label, 'label_name': label_name, 'batch_file_names': label_name, 'raw_file': tmp_file_path, 'new_label':mask1}
return sample
class RoadSequenceDatasetList(Dataset):
def __init__(self, file_path, transforms):
self.img_list = readTxttest(file_path)
self.dataset_size = len(self.img_list)
self.transforms = transforms
def __len__(self):
return self.dataset_size
def __getitem__(self, idx):
gt = self.img_list[idx]
gt_lanes = gt['lanes']
y_samples = gt['h_samples']
raw_file = gt['raw_file']
label_name = raw_file.split('/')[0] + '_' + raw_file.split('/')[1] + '_' + raw_file.split('/')[2] + '_' + raw_file.split('/')[3][:-4]
data = []
for i in range(5):
new_file = raw_file[:-6] + str(list1[i]) + '.jpg'
img_name = os.path.join(root_path, new_file)
img = io.imread(img_name)
img = cv2.resize(img, shape, interpolation=cv2.INTER_CUBIC) # shape = (320, 192)
img = img.astype('float32') / 255.0 # (192, 320, 3)
img = img.transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img1 = torch.from_numpy(img)
data.append(torch.unsqueeze(img1, dim=0))
data = torch.cat(data, 0)
gt_lanes_vis = [[(x, y) for (x, y) in zip(lane, y_samples) if x >= 0] for lane in gt_lanes]
mask = np.zeros((128, 256), dtype='float32') ##shape = (192, 320)
for lane in gt_lanes_vis:
if not lane: continue
lane = np.array([lane], dtype='float32')
lane_lable = copy.deepcopy(lane)
lane *= [256, 128] # shape = (224, 224)
lane /= [1280, 720]
# print('lane----', lane)
lane = lane.astype('int32')
lane_lable = lane_lable.astype('int32')
cv2.polylines(mask, lane, isClosed=False, color=1, thickness=1)
mask = mask[None, ...] # mask.shape(1, 192, 320)
mask = np.ascontiguousarray(mask)
label = torch.from_numpy(mask)
label = torch.squeeze(label)
sample = {'data': data, 'label': label, 'label_name': label_name, 'batch_file_names': label_name, 'raw_file': raw_file}
return sample
# return torch.from_numpy(img), torch.from_numpy(mask)