-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpdqsort.go
261 lines (226 loc) · 6.09 KB
/
pdqsort.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
package pdqsort
import "math/bits"
func Slice[T ordered](v []T) {
var tmp T // meaningless variable
limit := bits.Len(uint(len(v)))
recurse(v, tmp, false, limit)
}
// recurse sorts `v` recursively.
//
// If the slice had a predecessor in the original array, it is specified as `pred`(must be the minimum value if exist).
//
// `limit` is the number of allowed imbalanced partitions before switching to `heapsort`. If zero,
// this function will immediately switch to heapsort.
func recurse[T ordered](v []T, pred T, predExist bool, limit int) {
const maxInsertion = 24 // slices of up to this length get sorted using insertion sort.
var (
// True if the last partitioning was reasonably balanced.
wasBalanced = true
// True if the last partitioning didn't shuffle elements (the slice was already partitioned).
wasPartitioned = true
)
for {
length := len(v)
// Very short slices get sorted using insertion sort.
if length <= maxInsertion {
insertionSort(v)
return
}
// If too many bad pivot choices were made, simply fall back to heapsort in order to
// guarantee `O(n log n)` worst-case.
if limit == 0 {
heapSort(v)
return
}
// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
// some elements around. Hopefully we'll choose a better pivot this time.
if !wasBalanced {
breakPatterns(v)
limit--
}
// Choose a pivot and try guessing whether the slice is already sorted.
pivotidx, likelySorted := choosePivot(v)
// If the last partitioning was decently balanced and didn't shuffle elements, and if pivot
// selection predicts the slice is likely already sorted...
if wasBalanced && wasPartitioned && likelySorted {
// Try identifying several out-of-order elements and shifting them to correct
// positions. If the slice ends up being completely sorted, we're done.
if partialInsertionSort(v) {
return
}
}
// If the chosen pivot is equal to the predecessor, then it's the smallest element in the
// slice. Partition the slice into elements equal to and elements greater than the pivot.
// This case is usually hit when the slice contains many duplicate elements.
if predExist && pred == v[pivotidx] {
mid := partitionEqual(v, pivotidx)
v = v[mid:]
continue
}
// Partition the slice.
mid, wasP := partition(v, pivotidx)
wasPartitioned = wasP
left, right := v[:mid], v[mid+1:]
pivot := v[mid]
pivotExist := true
if len(left) < len(right) {
wasBalanced = len(left) >= len(v)/8
recurse(left, pred, predExist, limit)
v = right
pred = pivot
predExist = pivotExist
} else {
wasBalanced = len(right) >= len(v)/8
recurse(right, pivot, pivotExist, limit)
v = left
}
}
}
// partition partitions `v` into elements smaller than `v[pivotidx]`, followed by elements greater than or
// equal to `v[pivotidx]`.
//
// Returns a tuple of:
//
// 1. New pivot index.
// 2. True if `v` was already partitioned.
func partition[T ordered](v []T, pivotidx int) (int, bool) {
pivot := v[pivotidx]
v[0], v[pivotidx] = v[pivotidx], v[0]
i, j := 1, len(v)-1
for i <= j && v[i] < pivot {
i++
}
for i <= j && v[j] >= pivot {
j--
}
if i > j {
v[j], v[0] = v[0], v[j]
return j, true
}
for {
for i <= j && v[i] < pivot {
i++
}
for i <= j && v[j] >= pivot {
j--
}
if i > j {
break
}
v[i], v[j] = v[j], v[i]
i++
j--
}
v[j], v[0] = v[0], v[j]
return j, false
}
type xorshift uint64
func (r *xorshift) Next() uint64 {
*r ^= *r << 13
*r ^= *r >> 17
*r ^= *r << 5
return uint64(*r)
}
// breakPatterns scatters some elements around in an attempt to break patterns that might cause imbalanced
// partitions in quicksort.
func breakPatterns[T ordered](v []T) {
length := len(v)
if length < 8 {
return
}
r := xorshift(length)
modulus := nextPowerOfTwo(length)
var idxs [3]uint
idxs[0] = uint(length/4)*2 - 1
idxs[1] = uint(length/4) * 2
idxs[2] = uint(length/4)*2 + 1
for _, idx := range idxs {
other := int(uint(r.Next()) & (modulus - 1))
if other >= length {
other -= length
}
v[idx], v[other] = v[other], v[idx]
}
}
// partitionEqual partitions `v` into elements equal to `v[pivotidx]` followed by elements greater than `v[pivotidx]`.
//
// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain
// elements smaller than the pivot.
func partitionEqual[T ordered](v []T, pivotidx int) int {
v[0], v[pivotidx] = v[pivotidx], v[0]
pivot := v[0] // minimum value
i := 1
j := len(v) - 1
for {
for i <= j && pivot >= v[i] {
i++
}
for i <= j && pivot < v[j] {
j--
}
if i > j {
break
}
v[i], v[j] = v[j], v[i]
i++
j--
}
return i
}
// partialInsertionSort partially sorts a slice by shifting several out-of-order elements around.
// Returns `true` if the slice is sorted at the end. This function is `O(n)` worst-case.
func partialInsertionSort[T ordered](v []T) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // if the slice is shorter than this, don't shift any elements
)
length := len(v)
i := 1
for k := 0; k < maxSteps; k++ {
// Find the next pair of adjacent out-of-order elements.
for i < length && v[i] >= v[i-1] {
i++
}
// Are we done?
if i == length {
return true
}
// Don't shift elements on short arrays, that has a performance cost.
if length < shortestShifting {
return false
}
// Swap the found pair of elements. This puts them in correct order.
v[i-1], v[i] = v[i], v[i-1]
// Shift the smaller element to the left.
shiftTail(v, 0, i)
// Shift the greater element to the right.
shiftHead(v, i, len(v))
}
return false
}
func shiftTail[T ordered](v []T, a, b int) {
l := b - a
if l >= 2 {
for i := l - 1; i >= 1; i-- {
if v[i] >= v[i-1] {
break
}
v[i], v[i-1] = v[i-1], v[i]
}
}
}
func shiftHead[T ordered](v []T, a, b int) {
l := b - a
if l >= 2 {
for i := a + 1; i < l; i++ {
if v[i] >= v[i-1] {
break
}
v[i], v[i-1] = v[i-1], v[i]
}
}
}
func nextPowerOfTwo(length int) uint {
shift := bits.Len(uint(length))
return uint(1 << shift)
}