forked from JDAI-CV/FaceX-Zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
85 lines (75 loc) · 2.71 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import getpass
def parse_lb_txt(filename):
lines = open(filename, 'r').readlines()
train_dataset, test_dataset = [], []
for line in lines:
key, label = line.split(' ')[0], line[-2]
label = int(label)
mode, img_path = key.split('_') #
if mode == 'train':
train_dataset.append([key, label])
elif mode == 'test':
test_dataset.append([key, label])
return train_dataset, test_dataset
class Config:
num_classes = 8
ori_shape = (256, 256)
label_path = "/path/to/your/lb2.txt"
lmdb_f = "/path/to/your/AffectNet_lmdb/"
train_dataset, val_dataset = parse_lb_txt(label_path)
w, T = 0.5, 1.2
gamma = 1000
ramp_a = 6 # affectnet 4/6; ferplus 10/12/14; raf 9/10
batch_size = 72
test_minibatch=16
num_workers = 4
lr1 = [[6, 0.0001], [12, 0.00005], [20, 0.00001], [22, 0.00001], [25, 0.00005], [60, 0.00001]]
lr2 = [[4, 0.001], [8, 0.0005], [14, 0.0001], [22, 0.00001], [25, 0.00005], [60, 0.00001]]
bnneck = True # False for resnet50_ibn
use_dropout = True
BiasInCls = False
fc_num = 2
train_mode = 'sp_confidence'
second_order_statics = 'mean' # all, mean, var
# -----------saving dirs-------#
ckpt_root_dir = './checkpoints'
output_dir = 'AffectNet_res18'
# ---------------------------------------------------------------------------- #
# Input
# ---------------------------------------------------------------------------- #
image_crop_size = (224, 224)
padding = 0
image_channel = 3
horizontal_flip_p = 0.5
normalize_mean = [0.5, 0.5, 0.5]
normalize_std = [0.5, 0.5, 0.5]
# ---------------------------------------------------------------------------- #
# Model
# ---------------------------------------------------------------------------- #
num_branches = num_classes + 1
assert num_branches == (num_classes + 1)
backbone = 'resnet18'
pretrained = './pretrain/checkpoints/out_dir_res18/mv_epoch_17.pt'
pretrained_choice = 'msra' # '' or 'msra'
last_stride = 2
frozen_stages = -1
pooling_method = 'GAP'
# ---------------------------------------------------------------------------- #
# Optimizer
# ---------------------------------------------------------------------------- #
start_epoch = 0
max_epoch = 36
weight_decay = 1e-4
# set different lr to the backbone and the classifier
def get_lr(self, epoch):
for it_lr in self.lr1:
if epoch < it_lr[0]:
_lr1 = it_lr[1]
break
for it_lr in self.lr2:
if epoch < it_lr[0]:
_lr2 = it_lr[1]
break
return _lr1, _lr2
config = Config()