-
Notifications
You must be signed in to change notification settings - Fork 1
/
Net.py
128 lines (118 loc) · 3.89 KB
/
Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
# @Time : 2021/7/3 10:17
# @Author : zhao
# @File : Net.py
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class CNN(torch.nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels=1,out_channels=16,kernel_size=3,stride=1,padding=1),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=4,stride=2)
)
self.conv2 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=4, stride=2)
)
self.fn1 = torch.nn.Sequential(
torch.nn.Linear(480, 128),
torch.nn.ReLU(inplace=True)
)
self.fn2 = torch.nn.Sequential(
torch.nn.Linear(128, 7),
torch.nn.Sigmoid()
)
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0),-1)
x = self.fn1(x)
x = self.fn2(x)
return x
class CNN_UNSW(torch.nn.Module):
def __init__(self):
super(CNN_UNSW,self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels=1,out_channels=16,kernel_size=3,stride=1,padding=1),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=4,stride=2)
)
self.conv2 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=4, stride=2)
)
self.fn1 = torch.nn.Sequential(
torch.nn.Linear(288, 128),
torch.nn.ReLU(inplace=True)
)
self.fn2 = torch.nn.Sequential(
torch.nn.Linear(128, 2),
torch.nn.Sigmoid()
)
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0),-1)
x = self.fn1(x)
x = self.fn2(x)
return x
class MLP(torch.nn.Module):
def __init__(self):
super(MLP,self).__init__()
self.fn1 = torch.nn.Sequential(
torch.nn.Linear(68, 128),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.5)
)
self.fn2 = torch.nn.Sequential(
torch.nn.Linear(128, 64),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.5)
)
self.fn3 = torch.nn.Sequential(
torch.nn.Linear(64, 32),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.5)
)
self.fn4 = torch.nn.Sequential(
torch.nn.Linear(32, 7),
torch.nn.Sigmoid()
)
def forward(self,x):
x = self.fn1(x)
x = self.fn2(x)
x = self.fn3(x)
x = self.fn4(x)
return x
class MLP_UNSW(torch.nn.Module):
def __init__(self):
super(MLP_UNSW,self).__init__()
self.fn1 = torch.nn.Sequential(
torch.nn.Linear(42, 128),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.5)
)
self.fn2 = torch.nn.Sequential(
torch.nn.Linear(128, 96),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.5)
)
self.fn3 = torch.nn.Sequential(
torch.nn.Linear(96, 64),
torch.nn.ReLU(inplace=True),
torch.nn.Dropout(0.5)
)
self.fn4 = torch.nn.Sequential(
torch.nn.Linear(64, 2),
torch.nn.Sigmoid()
)
def forward(self,x):
x = self.fn1(x)
x = self.fn2(x)
x = self.fn3(x)
x = self.fn4(x)
return x