forked from phbradley/tcr-dist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore_trees_devel.py
466 lines (356 loc) · 14.2 KB
/
score_trees_devel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
## trees from distances
import string
from os import popen,system,getcwd
import sys
from math import floor,log,exp
#from popen2 import popen2
#from os.path import exists
#from glob import glob
## for making a small glyph that shows the protein-dna interactions
## in a cluster
def IsALeaf(node): return (node[0] == node[1])
def Average_score (leaf_list, leaf_scores, percentile):
## negative percentile is signal to use straight average...
ls = []
for leaf in leaf_list: ## some of leaf_scores[leaf] could be empty lists...
ls = ls + leaf_scores[leaf]
if not ls: ## no score information for this set of leaves
return None
elif percentile >= 0:
assert type(percentile) is int
ls.sort()
pos = (percentile * len(ls) ) / 100
if pos==len(ls): pos = len(ls)-1
return ls[pos]
else:
return sum( ls ) / float( len( ls ) )
class CallAverageScore:
def __init__( self, percentile ):
self.percentile = percentile
def __call__( self, leaf_list, leaf_scores ):
return Average_score( leaf_list, leaf_scores, self.percentile )
def Make_tree_new( distance, num_leaves, Update_distance_matrix, leaf_scores, Compute_average_score ):
# Compute_average_score has to be callable with two args: leaf_list and leaf_scores
N = num_leaves
nodes = []
for i in range(N):
nodes.append( (i,i,0.0,Compute_average_score([i],leaf_scores) ) )
for i in range(N): ## initialize distance matrix
for j in range(N):
distance[(nodes[i],nodes[j])] = distance[(i,j)]
while N>1:
## find two closest nodes and join them
min_d = 100000
for i in nodes:
for j in nodes:
if i<=j:continue
if distance[(i,j)] < min_d:
min_d = distance[(i,j)]
n1 = i
n2 = j
## print "num_nodes: %d Joining: %s and %s Distance: %7.3f\n"\
## %(N,Show_small(n1),Show_small(n2),min_d)
new_node_score = Compute_average_score( Node_members(n1)+Node_members(n2),leaf_scores)
new_node = (n1,n2,min_d,new_node_score)
## update the distances
Update_distance_matrix (new_node,nodes,distance)
## update the node_list
nodes.append(new_node)
del nodes[ nodes.index(n1)]
del nodes[ nodes.index(n2)]
N = N-1
return nodes[0]
# def Make_tree_zero_scores( distance, num_leaves, Update_distance_matrix ):
# N = num_leaves
# nodes = []
# for i in range(N):
# nodes.append( (i,i,0.0,0.0) )
# for i in range(N): ## initialize distance matrix
# for j in range(N):
# distance[(nodes[i],nodes[j])] = distance[(i,j)]
# while N>1:
# ## find two closest nodes and join them
# min_d = 100000
# for i in nodes:
# for j in nodes:
# if i<=j:continue
# if distance[(i,j)] < min_d:
# min_d = distance[(i,j)]
# n1 = i
# n2 = j
# new_node = (n1,n2,min_d,0.0)
# ## update the distances
# Update_distance_matrix (new_node,nodes,distance)
# ## update the node_list
# nodes.append(new_node)
# del nodes[ nodes.index(n1)]
# del nodes[ nodes.index(n2)]
# N = N-1
# return nodes[0]
## the old way
def Make_tree(distance,num_leaves,Update_distance_matrix,leaf_scores,percentile):
func = CallAverageScore( percentile )
return Make_tree_new( distance, num_leaves, Update_distance_matrix, leaf_scores, func )
def Copy_tree_update_scores( old_tree, leaf_scores, Compute_average_score ):
members = Node_members( old_tree )
score = Compute_average_score( members, leaf_scores )
if IsALeaf( old_tree ):
return ( old_tree[0], old_tree[1], old_tree[2], score )
else:
return ( Copy_tree_update_scores( old_tree[0], leaf_scores, Compute_average_score ),
Copy_tree_update_scores( old_tree[1], leaf_scores, Compute_average_score ),
old_tree[2], score )
def Show_tree(tree,names):
if IsALeaf(tree):
return names [tree[0]]
else:
return '('+Show_tree(tree[0],names)+':'+str(float(tree[2])/2)+','+\
Show_tree(tree[1],names)+':'+str(float(tree[2])/2)+')'
def Show_small(tree):
if IsALeaf(tree):
return `tree[0]`
else:
return '('+Show_small(tree[0])+','+Show_small(tree[1])+')'
def Node_members(node):
if IsALeaf(node):
return [node[0]]
else:
l1 = Node_members( node[0] )
l2 = Node_members( node[1] )
if min(l1)<min(l2):
return l1+l2
else:
return l2+l1
def Update_distance_matrix_AL(new_node,old_nodes,distances): ## average linkage
n1 = new_node[0]
n2 = new_node[1]
l1 = Node_members(new_node)
distances [ (new_node,new_node)] = 0.0
for n in old_nodes:
if n==n1 or n==n2:continue
l2 = Node_members(n)
avg = 0.0
count = 0
for i in l1:
for j in l2:
assert i!=j
avg = avg+ distances[(i,j)]
count = count + 1
distances[(n,new_node)] = avg/count
distances[(new_node,n)] = avg/count
return
def Update_distance_matrix_AL_GEOM(new_node,old_nodes,distances):
dl = distances.values()
dl.sort()
for i in dl:
if i!=0:
min_log = log(i) - 3 ## closer than the closest non-id pair
break
n1 = new_node[0]
n2 = new_node[1]
l1 = Node_members(new_node)
distances [ (new_node,new_node)] = 0.0
for n in old_nodes:
if n==n1 or n==n2:continue
l2 = Node_members(n)
avg = 0.0
count = 0
for i in l1:
for j in l2:
d = distances[(i,j)]
assert i!=j
count = count + 1
if d == 0.0:
avg = avg + min_log
else:
avg = avg + log( d )
distances[(n,new_node)] = exp( avg / count )
distances[(new_node,n)] = exp( avg / count )
return
def Update_distance_matrix_SL(new_node,old_nodes,distances): ## single linkage
n1 = new_node[0]
n2 = new_node[1]
l1 = Node_members(new_node)
distances [ (new_node,new_node)] = 0.0
for n in old_nodes:
if n==n1 or n==n2:continue
l2 = Node_members(n)
min_d = 1000
count = 0
for i in l1:
for j in l2:
assert i!=j
min_d = min(min_d, distances[(i,j)])
distances[(n,new_node)] = min_d
distances[(new_node,n)] = min_d
return
def Center(tree,node_position,sizes,use_sizes_as_weights=False):
l = Node_members(tree)
pos = 0.0
total_weight=0.0
for i in l:
if use_sizes_as_weights:
pos = pos + sizes[i]*node_position[i]
total_weight +=sizes[i]
else:
pos = pos + node_position[i]
total_weight+= 1
pos = pos / total_weight
return pos
def Size(tree,sizes):
if IsALeaf(tree):
return sizes[tree[0]]
else:
return Size(tree[0],sizes)+Size(tree[1],sizes)
def Fig_tree(tree,node_position,sizes,use_sizes_as_weights=False): ## edge = [ [x0,y0], [x1,y1], score, size]
if IsALeaf(tree):
return []
else:
rmsd = tree[2]
center = Center(tree,node_position,sizes,use_sizes_as_weights)
c0 = Center(tree[0],node_position,sizes,use_sizes_as_weights)
r0 = tree[0][2]
score0 = tree[0][3]
size0 = Size(tree[0],sizes)
if IsALeaf(tree[0]):
cluster0 = tree[0][0]
else:
cluster0 = -1
e0_horizontal = [ [rmsd, c0], [r0,c0], score0, size0, cluster0]
e0_vertical = [ [rmsd, c0], [rmsd,center], score0, 1, cluster0]
c1 = Center(tree[1],node_position,sizes,use_sizes_as_weights)
r1 = tree[1][2]
score1 = tree[1][3]
size1 = Size(tree[1],sizes)
if IsALeaf(tree[1]):
cluster1 = tree[1][0]
else:
cluster1 = -1
e1_horizontal = [ [rmsd, c1], [r1, c1], score1, size1 , cluster1]
e1_vertical = [ [rmsd, c1], [rmsd,center], score1, 1, cluster1]
return [ e0_vertical,e0_horizontal,e1_vertical,e1_horizontal] + \
Fig_tree( tree[0],node_position,sizes,use_sizes_as_weights ) + \
Fig_tree( tree[1],node_position,sizes,use_sizes_as_weights )
def Node_labels(tree,sizes,node_position,use_sizes_as_weights=False):
if IsALeaf(tree):return []
else:
pos = [tree[2],Center(tree,node_position,sizes,use_sizes_as_weights)]
size = 0
for leaf in Node_members(tree):
size = size+sizes[leaf]
return [ [ `size`, pos] ] + \
Node_labels(tree[0],sizes,node_position,use_sizes_as_weights) + \
Node_labels(tree[1],sizes,node_position,use_sizes_as_weights)
## return the y-coordinates of the different clusters
def Canvas_tree(tree, names, sizes, upper_left, lower_right, branch_width_fraction, plotter, label_singletons = False,
label_internal_nodes = True, font=None, score_range_for_coloring=None,
vertical_line_width = 1, show_colorful_rmsd_bar = False ):
## score_range_for_coloring is a tuple:(mn,mx)
if score_range_for_coloring: assert len(score_range_for_coloring) == 2
assert upper_left[0] < lower_right[0]
assert upper_left[1] < lower_right[1]
x0,y0 = upper_left
x1,y1 = lower_right
#plot_width = x1-x0
plot_height = y1-y0
## now we are assuming the origin is the top-left corner, like in svg
## plot_width and plot_height in pixels
## plotter has methods:
## .make_line ( [x0,y0], [x1,y1], line_width, normalized_score, extra_tag)
## .make_text (text, [x,y], font)
branch_width_pixels = plot_height * branch_width_fraction
#branch_width_pixels = min(100,plot_height/5)
## allocate widths for branches; widths measure cluster sizes
total = sum(sizes)
w_factor = float( branch_width_pixels) / total
total = 0
for s in sizes:
width = max(1,int(floor(0.5+ s*w_factor))) ## in pixels
total = total+width
remainder = plot_height - total
cluster_width = float(remainder)/len(names) ## padding alotted to each cluster
print 'branch_width_pixels: {:.2f} plot_height: {:.2f} cluster_padding: {:.3f} w_factor: {:.3f} num_clusters: {} total_members: {}'\
.format( branch_width_pixels,plot_height,cluster_width,w_factor,len(sizes),sum(sizes))
## position nodes vertically on tree
nodes = Node_members(tree)
node_position = {}
mark = y1
for i,node in enumerate(nodes):
width = max(1,int(floor(0.5+ sizes[node] * w_factor)))
node_position[ node ] = mark-width/2
mark = mark - cluster_width - width
edges = Fig_tree(tree,node_position,sizes,use_sizes_as_weights=True) ## each edge = [[x0,y0],[x1,y1],score,size,cluster]
## set fontsize: is this still right??
if not font:
font = 2*min(25, max (15, int(floor( 0.5 + (cluster_width+7.5)/10))))
## rescale the x-positions
max_rmsd = tree[2]
min_rmsd = tree[2]
for e in edges:
if e[0][0]>0: min_rmsd = min(min_rmsd,e[0][0])
if e[1][0]>0: min_rmsd = min(min_rmsd,e[1][0])
min_rmsd = max(0,min_rmsd-0.5)
def Transform(rmsd,min_rmsd = min_rmsd, max_rmsd = max_rmsd):
return int (floor ( 0.5 + x0 + (x1-x0) * (rmsd - min_rmsd) / (max_rmsd - min_rmsd)))
## rescale colors
scores = []
for e in edges:
edge_score = e[2]
if edge_score != None:
scores.append(edge_score)
min_score = min(scores)
max_score = max(scores)
print 'min_score:',min_score,'max_score:',max_score,score_range_for_coloring
if max_score == min_score:
max_score = max_score + 1
if score_range_for_coloring:
min_score,max_score = score_range_for_coloring
## write the edges
for e in edges:
start = [ Transform (max(e[0][0],min_rmsd)), e[0][1]] ## rescale x-position
stop = [ Transform (max(e[1][0],min_rmsd)), e[1][1]]
edge_score = e[2]
if edge_score == None:
normalized_score = None
else:
normalized_score = max(0.0, min(1.0, float( e[2] - min_score)/(max_score-min_score) ) )
line_width = max(1,int(floor(0.5+ e[3]*w_factor)))
if e[4]>=0: ## it's a real cluster edge
cluster = e[4]
extra_tag = 'cluster%02d.%03d'%(cluster,sizes[cluster])
else:
extra_tag = 'dummy'
if start[0] == stop[0]:
line_width = vertical_line_width
plotter.make_line(start,stop,line_width,normalized_score,extra_tag)
## show scale
line_x0 = Transform(min_rmsd)
line_x1 = Transform(max_rmsd)
if show_colorful_rmsd_bar:
line_steps = 512
line_step_size = (line_x1-line_x0)/float(line_steps)
for i in range( line_steps ):
norm_score = (float(i)+0.5)/(line_steps)
#print 'norm_score:',norm_score
plotter.make_line([ line_x0 + i*line_step_size,y0+5],
[ line_x0 +(i+1)*line_step_size,y0+5],3,norm_score )
else:
line_ypad = 5
line_ypad = 2
plotter.make_line([ line_x0,y0+line_ypad],[ line_x1,y0+line_ypad],2,0.0,color='black' )
for i in range(int(floor(min_rmsd+1)),1+int(floor(tree[2]))):
plotter.make_text( str(i), [Transform(i),y0], 20)
#plotter.make_text( 'Colors: from blue (%7.2f) to red (%7.2f)'%(min_score,max_score),
# [x0,y0+25],25)
## label leaves
for i in range(len(names)):
if sizes[i] == 1 and not label_singletons: continue
extra_tag = 'cluster%02d.%03d'%(i,sizes[i])
plotter.make_text(names[i],
[Transform(min_rmsd),node_position[i]],
font,extra_tag)
## label internal vertices with sizes
if label_internal_nodes:
for l in Node_labels (tree,sizes,node_position,use_sizes_as_weights=True):
plotter.make_text(l[0], [Transform(l[1][0]),l[1][1]], font)
return ( node_position, Transform, min_rmsd, w_factor ) ## nuisance