-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathoptuna_GAugM.py
152 lines (135 loc) · 5.35 KB
/
optuna_GAugM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import time
import copy
import torch
import pickle
import logging
import argparse
import numpy as np
import scipy.sparse as sp
from collections import Counter
import optuna
import torch
from models.GCN_dgl import GCN
from models.GAT_dgl import GAT
from models.GSAGE_dgl import GraphSAGE
from models.JKNet_dgl import JKNet
logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO)
parser = argparse.ArgumentParser(description='single')
parser.add_argument('--dataset', type=str, default='cora')
parser.add_argument('--gnn', type=str, default='gcn')
parser.add_argument('--i', type=str, default='1')
parser.add_argument('--gpu', type=str, default='-1')
parser.add_argument('--eval_orig', type=int, default=0)
parser.add_argument('--nlayers', type=int, default=-1)
parser.add_argument('--add_train', type=int, default=-1)
args = parser.parse_args()
gpu = args.gpu
if gpu == '-1':
gpuid = -1
else:
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
gpuid = 0
def sample_graph_det(adj_orig, A_pred, remove_pct, add_pct):
if remove_pct == 0 and add_pct == 0:
return copy.deepcopy(adj_orig)
orig_upper = sp.triu(adj_orig, 1)
n_edges = orig_upper.nnz
edges = np.asarray(orig_upper.nonzero()).T
if remove_pct:
n_remove = int(n_edges * remove_pct / 100)
pos_probs = A_pred[edges.T[0], edges.T[1]]
e_index_2b_remove = np.argpartition(pos_probs, n_remove)[:n_remove]
mask = np.ones(len(edges), dtype=bool)
mask[e_index_2b_remove] = False
edges_pred = edges[mask]
else:
edges_pred = edges
if add_pct:
n_add = int(n_edges * add_pct / 100)
# deep copy to avoid modifying A_pred
A_probs = np.array(A_pred)
# make the probabilities of the lower half to be zero (including diagonal)
A_probs[np.tril_indices(A_probs.shape[0])] = 0
# make the probabilities of existing edges to be zero
A_probs[edges.T[0], edges.T[1]] = 0
all_probs = A_probs.reshape(-1)
e_index_2b_add = np.argpartition(all_probs, -n_add)[-n_add:]
new_edges = []
for index in e_index_2b_add:
i = int(index / A_probs.shape[0])
j = index % A_probs.shape[0]
new_edges.append([i, j])
edges_pred = np.concatenate((edges_pred, new_edges), axis=0)
adj_pred = sp.csr_matrix((np.ones(len(edges_pred)), edges_pred.T), shape=adj_orig.shape)
adj_pred = adj_pred + adj_pred.T
return adj_pred
def test_gaugm(trial):
ds = args.dataset
gnn = args.gnn
eval_orig = args.eval_orig
t = time.time()
tvt_nids = pickle.load(open(f'data/graphs/{ds}_tvt_nids.pkl', 'rb'))
adj_orig = pickle.load(open(f'data/graphs/{ds}_adj.pkl', 'rb'))
features = pickle.load(open(f'data/graphs/{ds}_features.pkl', 'rb'))
labels = pickle.load(open(f'data/graphs/{ds}_labels.pkl', 'rb'))
if sp.issparse(features):
features = torch.FloatTensor(features.toarray())
A_pred = pickle.load(open(f'data/edge_probabilities/{ds}_graph_{args.i}_logits.pkl', 'rb'))
if ds == 'cora' and args.add_train > 0:
if args.add_train < 20:
new_trainids = []
cnt = Counter()
for i in tvt_nids[0]:
if cnt[labels.numpy()[i]] < args.add_train:
new_trainids.append(i)
cnt[labels.numpy()[i]] += 1
tvt_nids[0] = np.array(new_trainids)
else:
tvt_nids[0] = np.concatenate((tvt_nids[0], np.arange(640, 640+args.add_train)))
# sample the graph
remove_pct = trial.suggest_int('remove_pct', 0, 80)
add_pct = trial.suggest_int('add_pct', 0, 80)
adj_pred = sample_graph_det(adj_orig, A_pred, remove_pct, add_pct)
if gnn == 'gcn':
GNN = GCN
elif gnn == 'gat':
GNN = GAT
elif gnn == 'gsage':
GNN = GraphSAGE
elif gnn == 'jknet':
GNN = JKNet
accs = []
for _ in range(30):
if eval_orig > 0:
if args.nlayers > 0:
model = GNN(adj_pred, copy.deepcopy(adj_orig), features, labels, tvt_nids, print_progress=False, cuda=gpuid, epochs=200, n_layers=args.nlayers)
else:
model = GNN(adj_pred, copy.deepcopy(adj_orig), features, labels, tvt_nids, print_progress=False, cuda=gpuid, epochs=200)
else:
if args.nlayers > 0:
model = GNN(adj_pred, adj_pred, features, labels, tvt_nids, print_progress=False, cuda=gpuid, epochs=200, n_layers=args.nlayers)
else:
model = GNN(adj_pred, adj_pred, features, labels, tvt_nids, print_progress=False, cuda=gpuid, epochs=200)
acc, _, _ = model.fit()
accs.append(acc)
acc = np.mean(accs)
std = np.std(accs)
# print results
ev = 'e-orig' if eval_orig else 'e-pred'
trial.suggest_categorical('dataset', [ds])
trial.suggest_categorical('i', [args.i])
trial.suggest_categorical('gnn', [gnn])
trial.suggest_categorical('eval_orig', [eval_orig])
return acc
if __name__ == "__main__":
logging.info('start')
study = optuna.create_study(direction='maximize')
study.optimize(test_gaugm, n_trials=200)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))