-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathoptuna_GAugO.py
100 lines (88 loc) · 3.36 KB
/
optuna_GAugO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import pickle
import argparse
import numpy as np
from collections import Counter
from models.GAug import GAug
import torch
import optuna
import scipy.sparse as sp
parser = argparse.ArgumentParser(description='single')
parser.add_argument('--dataset', type=str, default='cora')
parser.add_argument('--gnn', type=str, default='gcn')
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--layers', type=int, default=-1)
parser.add_argument('--add_train', type=int, default=-1)
parser.add_argument('--feat_norm', type=str, default='row')
args = parser.parse_args()
ds = args.dataset
gnn = args.gnn
layer_type = args.gnn
gpu = args.gpu
if gpu == '-1':
cuda = -1
else:
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
cuda = 0
jk = False
if gnn == 'jknet':
layer_type = 'gsage'
jk = True
def objective(trial):
tvt_nids = pickle.load(open(f'data/graphs/{ds}_tvt_nids.pkl', 'rb'))
adj_orig = pickle.load(open(f'data/graphs/{ds}_adj.pkl', 'rb'))
features = pickle.load(open(f'data/graphs/{ds}_features.pkl', 'rb'))
labels = pickle.load(open(f'data/graphs/{ds}_labels.pkl', 'rb'))
if sp.issparse(features):
features = torch.FloatTensor(features.toarray())
if ds == 'cora' and args.add_train > 0:
if args.add_train < 20:
new_trainids = []
cnt = Counter()
for i in tvt_nids[0]:
if cnt[labels.numpy()[i]] < args.add_train:
new_trainids.append(i)
cnt[labels.numpy()[i]] += 1
tvt_nids[0] = np.array(new_trainids)
else:
tvt_nids[0] = np.concatenate((tvt_nids[0], np.arange(640, 640+args.add_train)))
lr = 0.005 if layer_type == 'gat' else 0.01
if args.layers > 0:
n_layers = args.layers
else:
n_layers = 1
if jk:
n_layers = 3
feat_norm = args.feat_norm
if ds == 'ppi':
feat_norm = 'col'
elif ds in ('blogcatalog', 'flickr'):
feat_norm = 'none'
change_frac = trial.suggest_discrete_uniform('alpha', 0, 1, 0.01)
beta = trial.suggest_discrete_uniform('beta', 0.0, 4.0, 0.1)
temp = trial.suggest_discrete_uniform('temp', 0.1, 2.1, 0.1)
warmup = trial.suggest_int('warmup', 0, 10)
pretrain_ep = trial.suggest_discrete_uniform('pretrain_ep', 5, 300, 5)
pretrain_nc = trial.suggest_discrete_uniform('pretrain_nc', 5, 300, 5)
accs = []
for _ in range(30):
model = GAug(adj_orig, features, labels, tvt_nids, cuda=cuda, gae=True, beta=beta, temperature=temp, warmup=int(warmup), gnnlayer_type=layer_type, jknet=jk, lr=lr, n_layers=n_layers, log=False, alpha=change_frac, feat_norm=feat_norm)
acc = model.fit(pretrain_ep=int(pretrain_ep), pretrain_nc=int(pretrain_nc))
accs.append(acc)
acc = np.mean(accs)
std = np.std(accs)
trial.suggest_categorical('dataset', [ds])
trial.suggest_categorical('gnn', [gnn])
trial.suggest_uniform('acc', acc, acc)
trial.suggest_uniform('std', std, std)
return acc
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=400)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))