forked from SebWouters/CheMPS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDMRG.cpp
506 lines (417 loc) · 19.9 KB
/
DMRG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <math.h>
#include <stdlib.h>
#include <iostream>
#include <string.h>
#include <sstream>
#include <sys/stat.h>
#include <sys/time.h>
#include <assert.h>
#include <unistd.h>
#include "DMRG.h"
#include "MPIchemps2.h"
using std::cout;
using std::endl;
CheMPS2::DMRG::DMRG( Problem * ProbIn, ConvergenceScheme * OptSchemeIn, const bool makechkpt, const string tmpfolder, int * occupancies ){
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER ){ PrintLicense(); }
#else
PrintLicense();
#endif
assert( ProbIn->checkConsistency() );
Prob = ProbIn;
L = Prob->gL();
Prob->construct_mxelem();
OptScheme = OptSchemeIn;
thePID = getpid(); //PID is unique for each MPI process
nStates = 1;
Ltensors = new TensorL ** [ L - 1 ];
F0tensors = new TensorF0 *** [ L - 1 ];
F1tensors = new TensorF1 *** [ L - 1 ];
S0tensors = new TensorS0 *** [ L - 1 ];
S1tensors = new TensorS1 *** [ L - 1 ];
Atensors = new TensorOperator *** [ L - 1 ];
Btensors = new TensorOperator *** [ L - 1 ];
Ctensors = new TensorOperator *** [ L - 1 ];
Dtensors = new TensorOperator *** [ L - 1 ];
Qtensors = new TensorQ ** [ L - 1 ];
Xtensors = new TensorX * [ L - 1 ];
isAllocated = new int[ L - 1 ]; // 0 not allocated; 1 moving right; 2 moving left
tensor_3rdm_a_J0_doublet = NULL;
tensor_3rdm_a_J1_doublet = NULL;
tensor_3rdm_a_J1_quartet = NULL;
tensor_3rdm_b_J0_doublet = NULL;
tensor_3rdm_b_J1_doublet = NULL;
tensor_3rdm_b_J1_quartet = NULL;
tensor_3rdm_c_J0_doublet = NULL;
tensor_3rdm_c_J1_doublet = NULL;
tensor_3rdm_c_J1_quartet = NULL;
tensor_3rdm_d_J0_doublet = NULL;
tensor_3rdm_d_J1_doublet = NULL;
tensor_3rdm_d_J1_quartet = NULL;
Gtensors = NULL;
Ytensors = NULL;
Ztensors = NULL;
Ktensors = NULL;
Mtensors = NULL;
for ( int cnt = 0; cnt < L - 1; cnt++ ){ isAllocated[ cnt ] = 0; }
for ( int timecnt = 0; timecnt < CHEMPS2_TIME_VECLENGTH; timecnt++ ){ timings[ timecnt ] = 0.0; }
num_double_write_disk = 0;
num_double_read_disk = 0;
the2DM = NULL;
the3DM = NULL;
theCorr = NULL;
Exc_activated = false;
makecheckpoints = makechkpt;
tempfolder = tmpfolder;
setupBookkeeperAndMPS( occupancies );
PreSolve();
}
void CheMPS2::DMRG::setupBookkeeperAndMPS( int * occupancies ){
denBK = new SyBookkeeper( Prob, OptScheme->get_D( 0 ) );
assert( denBK->IsPossible() );
std::stringstream sstream;
sstream << CheMPS2::DMRG_MPS_storage_prefix << nStates-1 << ".h5";
MPSstoragename.assign( sstream.str() );
struct stat stFileInfo;
int intStat = stat( MPSstoragename.c_str(), &stFileInfo );
loadedMPS = (( makecheckpoints ) && ( intStat==0 )) ? true : false;
#ifdef CHEMPS2_MPI_COMPILATION
assert( MPIchemps2::all_booleans_equal( loadedMPS ) );
#endif
if ( loadedMPS ){ loadDIM( MPSstoragename, denBK ); }
// Convert occupancies from HAM to DMRG orbitals
if (( occupancies != NULL ) && ( Prob->gReorder() )){
int * tmp_cpy_occ = new int[ L ];
for ( int cnt = 0; cnt < L; cnt++ ){ tmp_cpy_occ[ cnt ] = occupancies[ cnt ]; }
for ( int cnt = 0; cnt < L; cnt++ ){ occupancies[ cnt ] = tmp_cpy_occ[ Prob->gf2( cnt ) ]; }
delete [] tmp_cpy_occ;
}
// Set to ROHF dimensions
/*if (( !loadedMPS ) && ( occupancies != NULL )){
int left_n = 0;
int left_i = 0;
int left_2s = 0;
for ( int site = 0; site < denBK->gL(); site++ ){
for ( int N = denBK->gNmin( site ); N <= denBK->gNmax( site ); N++ ){
for ( int TwoS = denBK->gTwoSmin( site, N ); TwoS <= denBK->gTwoSmax( site, N ); TwoS+=2 ){
for ( int Irrep = 0; Irrep < denBK->getNumberOfIrreps(); Irrep++ ){
denBK->SetDim( site, N, TwoS, Irrep, 0 );
}
}
}
denBK->SetDim( site, left_n, left_2s, left_i, 1 );
left_n = left_n + occupancies[ site ];
left_i = (( occupancies[ site ] == 1 ) ? Irreps::directProd( left_i, Prob->gIrrep( site ) ) : left_i );
left_2s = (( occupancies[ site ] == 1 ) ? ( left_2s + 1 ) : left_2s );
}
assert( left_n == Prob->gN() );
assert( left_i == Prob->gIrrep() );
assert( left_2s == Prob->gTwoS() );
}*/
MPS = new TensorT * [ L ];
for ( int cnt = 0; cnt < L; cnt++ ){ MPS[ cnt ] = new TensorT( cnt, denBK ); }
if ( loadedMPS ){
bool isConverged;
loadMPS( MPSstoragename, MPS, &isConverged );
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER )
#endif
{ cout << "Loaded MPS " << MPSstoragename << " converged y/n? : " << isConverged << endl; }
} else {
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
if ( occupancies == NULL ){
for ( int site = 0; site < L; site++ ){
if ( am_i_master ){ MPS[ site ]->random(); }
left_normalize( MPS[ site ], NULL );
}
} else {
assert( Prob->check_rohf_occ( occupancies ) ); // Check compatibility
int left_n = 0;
int left_i = 0;
int left_2s = 0;
for ( int site = 0; site < L; site++ ){
const int right_n = left_n + occupancies[ site ];
const int right_i = (( occupancies[ site ] == 1 ) ? Irreps::directProd( left_i, Prob->gIrrep( site ) ) : left_i );
const int right_2s = (( occupancies[ site ] == 1 ) ? ( left_2s + 1 ) : left_2s );
const int dimL = denBK->gCurrentDim( site, left_n, left_2s, left_i );
const int dimR = denBK->gCurrentDim( site + 1, right_n, right_2s, right_i );
assert( dimL > 0 );
assert( dimR > 0 );
if ( am_i_master ){
MPS[ site ]->random();
for ( int NL = right_n - 2; NL <= right_n; NL++ ){
const int DS = (( right_n == NL + 1 ) ? 1 : 0 );
const int IL = (( right_n == NL + 1 ) ? Irreps::directProd( right_i, Prob->gIrrep( site ) ) : right_i );
for ( int TwoSL = right_2s - DS; TwoSL <= right_2s + DS; TwoSL+=2 ){
const int dimL2 = denBK->gCurrentDim( site, NL, TwoSL, IL );
if ( dimL2 > 0 ){
double * space = MPS[ site ]->gStorage( NL, TwoSL, IL, right_n, right_2s, right_i );
for ( int row = 0; row < dimL2; row++ ){ space[ row + dimL2 * 0 ] = 0.0; }
if (( NL == left_n ) && ( TwoSL == left_2s ) && ( IL == left_i )){ space[ 0 + dimL * 0 ] = 42; }
}
}
}
}
left_normalize( MPS[ site ], NULL );
left_n = right_n;
left_i = right_i;
left_2s = right_2s;
}
assert( left_n == Prob->gN() );
assert( left_i == Prob->gIrrep() );
assert( left_2s == Prob->gTwoS() );
}
}
}
CheMPS2::DMRG::~DMRG(){
if ( the2DM != NULL ){ delete the2DM; }
if ( the3DM != NULL ){ delete the3DM; }
if ( theCorr != NULL ){ delete theCorr; }
deleteAllBoundaryOperators();
delete [] Ltensors;
delete [] F0tensors;
delete [] F1tensors;
delete [] S0tensors;
delete [] S1tensors;
delete [] Atensors;
delete [] Btensors;
delete [] Ctensors;
delete [] Dtensors;
delete [] Qtensors;
delete [] Xtensors;
delete [] isAllocated;
for ( int site = 0; site < L; site++ ){ delete MPS[ site ]; }
delete [] MPS;
if ( Exc_activated ){
delete [] Exc_Eshifts;
for ( int state = 0; state < nStates - 1; state++ ){
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_specific_excitation( L, state ) == MPIchemps2::mpi_rank() )
#endif
{
for ( int orb = 0; orb < L; orb++ ){ delete Exc_MPSs[ state ][ orb ]; }
delete [] Exc_MPSs[ state ];
delete Exc_BKs[ state ];
delete [] Exc_Overlaps[ state ]; // The rest is allocated and deleted at DMRGoperators.cpp
}
}
delete [] Exc_MPSs;
delete [] Exc_BKs;
delete [] Exc_Overlaps;
}
delete denBK;
}
void CheMPS2::DMRG::PreSolve(){
deleteAllBoundaryOperators();
for ( int cnt = 0; cnt < L - 2; cnt++ ){ updateMovingRightSafeFirstTime( cnt ); }
TotalMinEnergy = 1e8;
MaxDiscWeightLastSweep = 0.0;
}
double CheMPS2::DMRG::Solve(){
bool change = ( TotalMinEnergy < 1e8 ) ? true : false; // 1 sweep from right to left: fixed virtual dimensions
double Energy = 0.0;
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
for ( int instruction = 0; instruction < OptScheme->get_number(); instruction++ ){
int nIterations = 0;
double EnergyPrevious = Energy + 10 * OptScheme->get_energy_conv( instruction ); // Guarantees that there's always at least 1 left-right sweep
while (( fabs( Energy - EnergyPrevious ) > OptScheme->get_energy_conv( instruction ) ) && ( nIterations < OptScheme->get_max_sweeps( instruction ) )){
for ( int timecnt = 0; timecnt < CHEMPS2_TIME_VECLENGTH; timecnt++ ){ timings[ timecnt ] = 0.0; }
num_double_write_disk = 0;
num_double_read_disk = 0;
struct timeval start, end;
EnergyPrevious = Energy;
gettimeofday( &start, NULL );
Energy = sweepleft( change, instruction, am_i_master ); // Only relevant call in this block of code
gettimeofday( &end, NULL );
double elapsed = ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
if ( am_i_master ){
cout << "******************************************************************" << endl;
cout << "*** Information on left sweep " << nIterations << " of instruction " << instruction << ":" << endl;
cout << "*** Elapsed wall time = " << elapsed << " seconds" << endl;
cout << "*** |--> S.join = " << timings[ CHEMPS2_TIME_S_JOIN ] << " seconds" << endl;
cout << "*** |--> S.solve = " << timings[ CHEMPS2_TIME_S_SOLVE ] << " seconds" << endl;
cout << "*** |--> S.split = " << timings[ CHEMPS2_TIME_S_SPLIT ] << " seconds" << endl;
print_tensor_update_performance();
cout << "*** Minimum energy = " << LastMinEnergy << endl;
cout << "*** Maximum discarded weight = " << MaxDiscWeightLastSweep << endl;
}
if ( Exc_activated ){ calc_overlaps( false ); }
if ( am_i_master ){
cout << "******************************************************************" << endl;
}
change = true; //rest of sweeps: variable virtual dimensions
for ( int timecnt = 0; timecnt < CHEMPS2_TIME_VECLENGTH; timecnt++ ){ timings[ timecnt ] = 0.0; }
num_double_write_disk = 0;
num_double_read_disk = 0;
gettimeofday( &start, NULL );
Energy = sweepright( change, instruction, am_i_master ); // Only relevant call in this block of code
gettimeofday( &end, NULL );
elapsed = ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
if ( am_i_master ){
cout << "******************************************************************" << endl;
cout << "*** Information on right sweep " << nIterations << " of instruction " << instruction << ":" << endl;
cout << "*** Elapsed wall time = " << elapsed << " seconds" << endl;
cout << "*** |--> S.join = " << timings[ CHEMPS2_TIME_S_JOIN ] << " seconds" << endl;
cout << "*** |--> S.solve = " << timings[ CHEMPS2_TIME_S_SOLVE ] << " seconds" << endl;
cout << "*** |--> S.split = " << timings[ CHEMPS2_TIME_S_SPLIT ] << " seconds" << endl;
print_tensor_update_performance();
cout << "*** Minimum energy = " << LastMinEnergy << endl;
cout << "*** Maximum discarded weight = " << MaxDiscWeightLastSweep << endl;
cout << "*** Energy difference with respect to previous leftright sweep = " << fabs(Energy-EnergyPrevious) << endl;
}
if ( Exc_activated ){ calc_overlaps( true ); }
if ( am_i_master ){
cout << "******************************************************************" << endl;
if ( makecheckpoints ){ saveMPS( MPSstoragename, MPS, denBK, false ); } // Only the master proc makes MPS checkpoints !!
}
nIterations++;
}
if ( am_i_master ){
cout << "*** Information on completed instruction " << instruction << ":" << endl;
cout << "*** The reduced virtual dimension DSU(2) = " << OptScheme->get_D(instruction) << endl;
cout << "*** The total number of reduced MPS variables = " << get_num_mps_var() << endl;
cout << "*** Minimum energy encountered during all instructions = " << TotalMinEnergy << endl;
cout << "*** Minimum energy encountered during the last sweep = " << LastMinEnergy << endl;
cout << "*** Maximum discarded weight during the last sweep = " << MaxDiscWeightLastSweep << endl;
cout << "******************************************************************" << endl;
}
}
return TotalMinEnergy;
}
double CheMPS2::DMRG::sweepleft( const bool change, const int instruction, const bool am_i_master ){
double Energy = 0.0;
const double noise_level = fabs( OptScheme->get_noise_prefactor( instruction ) ) * MaxDiscWeightLastSweep;
const double dvdson_rtol = OptScheme->get_dvdson_rtol( instruction );
const int vir_dimension = OptScheme->get_D( instruction );
MaxDiscWeightLastSweep = 0.0;
LastMinEnergy = 1e8;
for ( int index = L - 2; index > 0; index-- ){
Energy = solve_site( index, dvdson_rtol, noise_level, vir_dimension, am_i_master, false, change );
if ( Energy < TotalMinEnergy ){ TotalMinEnergy = Energy; }
if ( Energy < LastMinEnergy ){ LastMinEnergy = Energy; }
if ( am_i_master ){
cout << "Energy at sites (" << index << ", " << index + 1 << ") is " << Energy << endl;
}
// Prepare for next step
struct timeval start, end;
gettimeofday( &start, NULL );
updateMovingLeftSafe( index );
gettimeofday( &end, NULL );
timings[ CHEMPS2_TIME_TENS_TOTAL ] += ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
}
return Energy;
}
double CheMPS2::DMRG::sweepright( const bool change, const int instruction, const bool am_i_master ){
double Energy = 0.0;
const double noise_level = fabs( OptScheme->get_noise_prefactor( instruction ) ) * MaxDiscWeightLastSweep;
const double dvdson_rtol = OptScheme->get_dvdson_rtol( instruction );
const int vir_dimension = OptScheme->get_D( instruction );
MaxDiscWeightLastSweep = 0.0;
LastMinEnergy = 1e8;
for ( int index = 0; index < L - 2; index++ ){
Energy = solve_site( index, dvdson_rtol, noise_level, vir_dimension, am_i_master, true, change );
if ( Energy < TotalMinEnergy ){ TotalMinEnergy = Energy; }
if ( Energy < LastMinEnergy ){ LastMinEnergy = Energy; }
if ( am_i_master ){
cout << "Energy at sites (" << index << ", " << index + 1 << ") is " << Energy << endl;
}
// Prepare for next step
struct timeval start, end;
gettimeofday( &start, NULL );
updateMovingRightSafe( index );
gettimeofday( &end, NULL );
timings[ CHEMPS2_TIME_TENS_TOTAL ] += ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
}
return Energy;
}
double CheMPS2::DMRG::solve_site( const int index, const double dvdson_rtol, const double noise_level, const int virtual_dimension, const bool am_i_master, const bool moving_right, const bool change ){
struct timeval start, end;
// Construct two-site object S. Each MPI process joins the MPS tensors. Before a matrix-vector multiplication the vector is broadcasted anyway.
gettimeofday( &start, NULL );
Sobject * denS = new Sobject( index, denBK );
denS->Join( MPS[ index ], MPS[ index + 1 ] );
gettimeofday( &end, NULL );
timings[ CHEMPS2_TIME_S_JOIN ] += ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
// Feed everything to the solver. Each MPI process returns the correct energy. Only MPI_CHEMPS2_MASTER has the correct denS solution.
gettimeofday( &start, NULL );
Heff Solver( denBK, Prob, dvdson_rtol );
double ** VeffTilde = NULL;
if ( Exc_activated ){ VeffTilde = prepare_excitations( denS ); }
double Energy = Solver.SolveDAVIDSON( denS, Ltensors, Atensors, Btensors, Ctensors, Dtensors, S0tensors, S1tensors, F0tensors, F1tensors, Qtensors, Xtensors, nStates - 1, VeffTilde );
Energy += Prob->gEconst();
if ( Exc_activated ){ cleanup_excitations( VeffTilde ); }
gettimeofday( &end, NULL );
timings[ CHEMPS2_TIME_S_SOLVE ] += ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
// Decompose the S-object. MPI_CHEMPS2_MASTER decomposes denS. Each MPI process returns the correct discWeight. Each MPI process has the new MPS tensors set.
gettimeofday( &start, NULL );
if (( noise_level > 0.0 ) && ( am_i_master )){ denS->addNoise( noise_level ); }
const double discWeight = denS->Split( MPS[ index ], MPS[ index + 1 ], virtual_dimension, moving_right, change );
delete denS;
if ( discWeight > MaxDiscWeightLastSweep ){ MaxDiscWeightLastSweep = discWeight; }
gettimeofday( &end, NULL );
timings[ CHEMPS2_TIME_S_SPLIT ] += ( end.tv_sec - start.tv_sec ) + 1e-6 * ( end.tv_usec - start.tv_usec );
return Energy;
}
int CheMPS2::DMRG::get_num_mps_var() const{
int num_var = 0;
for ( int site = 0; site < L; site++ ){
num_var += MPS[ site ]->gKappa2index( MPS[ site ]->gNKappa() );
}
return num_var;
}
void CheMPS2::DMRG::activateExcitations( const int maxExcIn ){
Exc_activated = true;
maxExc = maxExcIn;
Exc_Eshifts = new double[ maxExc ];
Exc_MPSs = new TensorT ** [ maxExc ];
Exc_BKs = new SyBookkeeper * [ maxExc ];
Exc_Overlaps = new TensorO ** [ maxExc ];
}
void CheMPS2::DMRG::newExcitation( const double EshiftIn ){
assert( Exc_activated );
assert( nStates - 1 < maxExc );
if ( the2DM != NULL ){ delete the2DM; the2DM = NULL; }
if ( the3DM != NULL ){ delete the3DM; the3DM = NULL; }
if ( theCorr != NULL ){ delete theCorr; theCorr = NULL; }
deleteAllBoundaryOperators();
Exc_Eshifts[ nStates - 1 ] = EshiftIn;
#ifdef CHEMPS2_MPI_COMPILATION
if ( MPIchemps2::owner_specific_excitation( L, nStates - 1 ) == MPIchemps2::mpi_rank() ){
#endif
Exc_MPSs[ nStates - 1 ] = MPS;
Exc_BKs[ nStates - 1 ] = denBK;
Exc_Overlaps[ nStates - 1 ] = new TensorO*[ L - 1 ];
#ifdef CHEMPS2_MPI_COMPILATION
} else {
for ( int site = 0; site < L; site++ ){ delete MPS[ site ]; }
delete [] MPS;
delete denBK;
}
#endif
nStates++;
setupBookkeeperAndMPS();
PreSolve();
}