forked from SebWouters/CheMPS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest2.py
82 lines (70 loc) · 2.63 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#
# CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
# Copyright (C) 2013-2018 Sebastian Wouters
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
import numpy as np
import sys
import PyCheMPS2
import ctypes
# Set the seed of the random number generator and cout.precision
Initializer = PyCheMPS2.PyInitialize()
Initializer.Init()
# Read in the FCIDUMP
psi4group = 5 # c2v: see chemps2/Irreps.h
filename = b'../../tests/matrixelements/H2O.631G.FCIDUMP'
orbirreps = np.array([-1, -1], dtype=ctypes.c_int) # CheMPS2 reads it in from FCIDUMP
Ham = PyCheMPS2.PyHamiltonian( -1, psi4group, orbirreps, filename )
# Define the symmetry sector
TwoS = 0 # Two times the targeted spin
Nelec = 10 # The number of electrons
Irrep = 0 # The targeted irrep
# Setting up the Problem
Prob = PyCheMPS2.PyProblem(Ham, TwoS, Nelec, Irrep)
# Setting up the ConvergenceScheme
# setInstruction(instruction, D, Econst, maxSweeps, noisePrefactor)
OptScheme = PyCheMPS2.PyConvergenceScheme(2) # 2 instructions
OptScheme.setInstruction(0, 100, 1e-10, 3, 0.1)
OptScheme.setInstruction(1, 3000, 1e-10, 10, 0.0)
# Do DMRG calculation
theDMRG = PyCheMPS2.PyDMRG(Prob, OptScheme)
EnergyDMRG = theDMRG.Solve()
theDMRG.calc2DMandCorrelations()
# Clean-up
# theDMRG.deleteStoredMPS()
theDMRG.deleteStoredOperators()
del theDMRG
del OptScheme
del Prob
# Do FCI calculation
Nel_up = ( Nelec + TwoS ) / 2
Nel_down = ( Nelec - TwoS ) / 2
maxMemWorkMB = 10.0
FCIverbose = 1
theFCI = PyCheMPS2.PyFCI(Ham, Nel_up, Nel_down, Irrep, maxMemWorkMB, FCIverbose)
GSvector = np.zeros([ theFCI.getVecLength() ], dtype=ctypes.c_double)
GSvector[ theFCI.LowestEnergyDeterminant() ] = 1.0
EnergyFCI = theFCI.GSDavidson(GSvector)
theFCI.CalcSpinSquared(GSvector)
# Clean-up
del theFCI
del Ham
del Initializer
# Check whether the test succeeded
if (np.fabs(EnergyDMRG - EnergyFCI) < 1e-8):
print("================> Did test 2 succeed : yes")
else:
print("================> Did test 2 succeed : no")