-
Notifications
You must be signed in to change notification settings - Fork 0
/
119.pascals-triangle-ii.0.js
61 lines (60 loc) · 1.16 KB
/
119.pascals-triangle-ii.0.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/*
* @lc app=leetcode id=119 lang=javascript
*
* [119] Pascal's Triangle II
*
* https://leetcode.com/problems/pascals-triangle-ii/description/
*
* algorithms
* Easy (42.62%)
* Total Accepted: 192.1K
* Total Submissions: 450.6K
* Testcase Example: '3'
*
* Given a non-negative index k where k ≤ 33, return the k^th index row of the
* Pascal's triangle.
*
* Note that the row index starts from 0.
*
*
* In Pascal's triangle, each number is the sum of the two numbers directly
* above it.
*
* Example:
*
*
* Input: 3
* Output: [1,3,3,1]
*
*
* Follow up:
*
* Could you optimize your algorithm to use only O(k) extra space?
*
*/
/**
* @param {number} rowIndex
* @return {number[]}
*/
const calculate = (bot, up) => {
if (up === 0) return 1
let product = bot
let quotient = 1
let i
for (i = 1; i < up; i++) {
product *= (bot - i)
}
for (i = 2; i <= up; i++) {
quotient *= i
}
return product / quotient
}
const getRow = (numRows) => {
let res = []
let i
let mid = ~~(numRows / 2)
for (i = 0; i <= mid; i++) {
res.push(calculate(numRows, i))
}
return res.concat(res.slice(0, mid + (numRows % 2)).reverse())
}