Skip to content

zhengying-liu/autodl_starting_kit_stable

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

91 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoCV/AutoDL starting kit

ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS". UNIVERSITE PARIS SUD, INRIA, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM ANY EXPRESSED OR IMPLIED WARRANTIES.

Download this starting kit

You can download this starting kit by clicking on the green button "Clone or download" on top of this GitHub repo, then "Download ZIP". You'll have this whole starting kit by unzipping the downloaded file.

Another convenient way is to use git clone:

cd <path_to_your_directory>
git clone https://github.com/zhengying-liu/autodl_starting_kit_stable.git

(If you are an experienced user of GitHub, feel free to fork this repo and clone your own repo instead)

Then you can begin participating to the AutoCV/AutoDL challenge by carefully reading this README.md file.

Update this starting kit

As new features and possible bug fixes will be constantly added to this starting kit, you are invited to get latest updates before each usage by running

cd path/to/autodl_starting_kit_stable/
git pull

(or by syncing your fork if you forked this repo)

Local development and testing

To make your own submission to AutoCV/AutoDL challenge, you need to modify the file model.py in AutoDL_sample_code_submission/, which implements the logic of your algorithm. You can then test it on your local computer using Docker, in the exact same environment as on the CodaLab challenge platform. Advanced users can also run local test without Docker, if they install all the required packages, see the Dockerfile.

If you are new to docker, install docker from https://docs.docker.com/get-started/. Then, at the shell, run:

cd path/to/autodl_starting_kit_stable/
docker run -it -v "$(pwd):/app/codalab" -p 8888:8888 evariste/autodl:cpu-latest

The tag cpu-latest indicates that this image only supports usage of CPU (instead of GPU). The option -v "$(pwd):/app/codalab" mounts current directory (autodl_starting_kit_stable/) as /app/codalab. If you want to mount other directories on your disk, please replace $(pwd) by your own directory. The option -p 8888:8888 is useful for running a Jupyter notebook tutorial inside Docker.

The backend on CodaLab runs a slightly different Docker image

evariste/autodl:gpu-latest

who has Nvidia GPU supports. Both Docker images have python=3.5.2 and have installed packages such as tensorflow-gpu=1.13.1 (or tensorflow=1.13.1 for cpu), torch=1.3.1, keras=2.2.4, CUDA 10, cuDNN 7.5, etc. If you want to run local test with Nvidia GPU support, please make sure you have installed nvidia-docker and run instead

nvidia-docker run -it -v "$(pwd):/app/codalab" -p 8888:8888 evariste/autodl:gpu-latest

Make sure you use enough RAM (at least 4GB). If the port 8888 is occupied, you can use other ports, e.g. 8899, and use instead the option -p 8899:8888.

You will then be able to run the ingestion program (to produce predictions) and the scoring program (to evaluate your predictions) on toy sample data. In the AutoCV/AutoDL challenge, these two programs will run in parallel to give real-time feedback (with learning curves). So we provide a Python script to simulate this behavior:

python run_local_test.py

Then you can view the real-time feedback with a learning curve by opening the HTML page in AutoDL_scoring_output/.

The full usage is

python run_local_test.py -dataset_dir='AutoDL_sample_data/miniciao' -code_dir='AutoDL_simple_baseline_models/linear'

or

python run_local_test.py -dataset_dir='AutoDL_public_data/Munster' -code_dir='AutoDL_sample_code_submission'

You can change the argument dataset_dir to other datasets (e.g. the five public datasets we provide). On the other hand, you can also modify the directory containing your other sample code (model.py).

Run the tutorial

We provide a tutorial in the form of a Jupyter notebook. When you are in your docker container, enter:

jupyter-notebook --ip=0.0.0.0 --allow-root &

Then copy and paste the URL containing your token. It should look like something like that:

http://0.0.0.0:8888/?token=82e416e792c8f6a9f2194d2f4dbbd3660ad4ca29a4c58fe7

and select tutorial.ipynb in the menu.

Download public datasets

We provide several public datasets for participants. They can use these datasets to:

  1. Explore data (e.g. using data_browser.py, see next section);
  2. Do local test for their own algorithm;
  3. Enable meta-learning. These datasets can be downloaded on the competition website and we also provide a script to facilitate the data downloading process. The usage is:
python download_public_datasets.py

Note that this can take a few minutes, depending on your connection.

Visualize datasets

WARNING: to be run outside of a Docker container.

We provide a script for visualizing random examples of a given dataset:

python data_browser.py -dataset_dir=AutoDL_sample_data/miniciao

You can change the dataset name miniciao to that of any other dataset (e.g. Munster, Chucky, Pedro, etc.).

As all datasets are formatted into TFRecords, this script actually provides a way to easily see what their code receives as examples (and labels), especially for the participants who are not familiar with this format.

Understand how a submission is evaluated

You may have following questions:

  • How is a submission handled and evaluated on CodaLab? How is it implemented?
  • What are ingestion program and scoring program? What do they do?

To answer these questions, you can find a flow chart (evaluation-flow-chart.png) in the repo:

Evaluation Flow Chart

If you still want more details, you can refer to the source code at

  • Ingestion Program: AutoDL_ingestion_program/ingestion.py
  • Scoring Program: AutoDL_scoring_program/score.py

Prepare a ZIP file for submission on CodaLab

Zip the contents of AutoDL_sample_code_submission(or any folder containing your model.py file) without the directory structure:

cd AutoDL_sample_code_submission/
zip -r mysubmission.zip *

then use the "Upload a Submission" button to make a submission to the competition page on CodaLab platform.

Tip: to look at what's in your submission zip file without unzipping it, you can do

unzip -l mysubmission.zip

Report bugs and create issues

If you run into bugs or issues when using this starting kit, please create issues on the Issues page of this repo. Two templates will be given when you click the New issue button.

Contact us

If you have any questions, please contact us via: autodl@chalearn.org

About

Starting kit for AutoCV/AutoDL challenge (https://autodl.chalearn.org)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published