-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_net_atl.py
265 lines (230 loc) · 9.61 KB
/
train_net_atl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
"""
Detection Training Script.
This scripts reads a given config file and runs the training or evaluation.
It is an entry point that is made to train standard models in detectron2.
In order to let one script support training of many models,
this script contains logic that are specific to these built-in models and therefore
may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".
Therefore, we recommend you to use detectron2 as an library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.
"""
import logging
import os
import time
from collections import OrderedDict
from typing import Dict
import torch
from torch.nn.parallel import DistributedDataParallel
import numpy as np
import detectron2.utils.comm as comm
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import verify_results
from detectron2.modeling import GeneralizedRCNNWithTTA
from detectron2.evaluation import COCOEvaluator
from lib.config import add_hoircnn_default_config
from lib.data import build_hoi_train_loader, build_hoi_test_loader
from lib.evaluation import VCOCOEvaluator, HICOEvaluator
from lib.checkpoint import DetectionCheckpointer
from detectron2.utils.events import EventStorage, get_event_storage
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains pre-defined default logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop. You can use
"tools/plain_train_net.py" as an example.
"""
def __init__(self, cfg):
super().__init__(cfg)
# Assume no other objects need to be checkpointed.
# We can later make it checkpoint the stateful hooks
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
self.model,
cfg.OUTPUT_DIR,
optimizer=self.optimizer,
scheduler=self.scheduler,
)
# TODO add iter
self._coco_data_loader_iter = iter(self._trainer.data_loader[1])
self._hoi_data_loader_iter = iter(self._trainer.data_loader[0])
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "vcoco":
return VCOCOEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'coco':
return COCOEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == "hico-det":
return HICOEvaluator(dataset_name, cfg, True, output_folder)
else:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA
# Only support some R-CNN models.
logger.info("Running inference with test-time augmentation ...")
model = GeneralizedRCNNWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
@classmethod
def build_train_loader(cls, cfg):
"""
Custom data loader for HOI detection.
Returns:
iterable
"""
hoi_loader = build_hoi_train_loader(cfg)
acfg = cfg.clone()
acfg.DATASETS.defrost()
acfg.SOLVER.defrost()
acfg.SOLVER.IMS_PER_BATCH = cfg.MODEL.ROI_HEADS.OBJ_IMG_NUMS
acfg.DATASETS.TRAIN = ('hico-coco',)
coco_loader = build_hoi_train_loader(acfg)
return [hoi_loader, coco_loader]
@classmethod
def build_test_loader(cls, cfg, dataset_name):
"""
Returns:
iterable
It now calls :func:`detectron2.data.build_detection_test_loader`.
Overwrite it if you'd like a different data loader.
"""
return build_hoi_test_loader(cfg, dataset_name)
def run_step(self):
"""
Implement the standard training logic described above.
"""
assert self.model.training, "[SimpleTrainer] model was changed to eval mode!"
start = time.perf_counter()
"""
If you want to do something with the data, you can wrap the dataloader.
"""
data_hoi = next(self._hoi_data_loader_iter)
data_coco = next(self._coco_data_loader_iter)
data_time = time.perf_counter() - start
"""
If you want to do something with the losses, you can wrap the model.
"""
loss_dict = self.model(data_hoi+data_coco)
losses = sum(loss_dict.values())
"""
If you need to accumulate gradients or do something similar, you can
wrap the optimizer with your custom `zero_grad()` method.
"""
self.optimizer.zero_grad()
losses.backward()
self._write_metrics(loss_dict, data_time)
"""
If you need gradient clipping/scaling or other processing, you can
wrap the optimizer with your custom `step()` method. But it is
suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4
"""
self.optimizer.step()
def _write_metrics(self, loss_dict: Dict[str, torch.Tensor], data_time: float):
"""
Args:
loss_dict (dict): dict of scalar losses
data_time (float): time taken by the dataloader iteration
"""
device = next(iter(loss_dict.values())).device
# Use a new stream so these ops don't wait for DDP or backward
with torch.cuda.stream(torch.cuda.Stream() if device.type == "cuda" else None):
metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()}
metrics_dict["data_time"] = data_time
# Gather metrics among all workers for logging
# This assumes we do DDP-style training, which is currently the only
# supported method in detectron2.
all_metrics_dict = comm.gather(metrics_dict)
if comm.is_main_process():
storage = get_event_storage()
# data_time among workers can have high variance. The actual latency
# caused by data_time is the maximum among workers.
data_time = np.max([x.pop("data_time") for x in all_metrics_dict])
storage.put_scalar("data_time", data_time)
# average the rest metrics
metrics_dict = {
k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys()
}
total_losses_reduced = sum(metrics_dict.values())
if not np.isfinite(total_losses_reduced):
raise FloatingPointError(
f"Loss became infinite or NaN at iteration={self.iter}!\n"
f"loss_dict = {metrics_dict}"
)
storage.put_scalar("total_loss", total_losses_reduced)
if len(metrics_dict) > 1:
storage.put_scalars(**metrics_dict)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_hoircnn_default_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
#model.find_unused_parameters = True
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
"""
If you'd like to do anything fancier than the standard training logic,
consider writing your own training loop or subclassing the trainer.
"""
trainer = Trainer(cfg)
trainer.model.find_unused_parameters = True
trainer.resume_or_load(resume=args.resume)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)