-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
133 lines (116 loc) · 5.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import json
import torch
from nltk import word_tokenize
from pytorch_transformers import BertForTokenClassification, BertTokenizer
class BertNer(BertForTokenClassification):
def forward(self, input_ids, token_type_ids=None, attention_mask=None, valid_ids=None, **kwargs):
sequence_output = self.bert(input_ids, token_type_ids, attention_mask, head_mask=None)[0]
batch_size, max_len, feat_dim = sequence_output.shape
valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=torch.float32,
device='cuda' if torch.cuda.is_available() else 'cpu')
for i in range(batch_size):
jj = -1
for j in range(max_len):
if valid_ids[i][j].item() == 1:
jj += 1
valid_output[i][jj] = sequence_output[i][j]
sequence_output = self.dropout(valid_output)
logits = self.classifier(sequence_output)
return logits
class Ner:
def __init__(self, model_dir: str):
self.model, self.tokenizer, self.model_config = self.load_model(model_dir)
self.label_map = self.model_config["label_map"]
self.max_seq_length = self.model_config["max_seq_length"]
self.label_map = {int(k): v for k, v in self.label_map.items()}
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
self.model.eval()
def load_model(self, model_dir: str, model_config: str = "model_config.json"):
model_config = os.path.join(model_dir, model_config)
model_config = json.load(open(model_config))
model = BertNer.from_pretrained(model_dir)
tokenizer = BertTokenizer.from_pretrained(model_dir, do_lower_case=model_config["do_lower"])
return model, tokenizer, model_config
def tokenize(self, text: str):
""" tokenize input"""
words = word_tokenize(text)
tokens = []
valid_positions = []
tokens_len = 0
parsed_word_num = 0
tokenize_flag = True
for i, word in enumerate(words):
if tokenize_flag:
token = self.tokenizer.tokenize(word)
else:
token = self.tokenizer.tokenize(word)
if len(token) > 1:
token = ['UNK']
tokens_len += len(token)
parsed_word_num += 1
rest_word_num = len(words) - parsed_word_num
token_size = tokens_len + rest_word_num
if token_size >= 510:
tokenize_flag = False
token_size -= len(token)
token = self.tokenizer.tokenize(word)
if len(token) > 1:
token = ['UNK']
token_size += len(token)
tokens.extend(token)
for j in range(len(token)):
if j == 0:
valid_positions.append(1)
else:
valid_positions.append(0)
return tokens, valid_positions
def preprocess(self, text: str):
""" preprocess """
tokens, valid_positions = self.tokenize(text)
# insert "[CLS]"
tokens.insert(0, "[CLS]")
valid_positions.insert(0, 1)
# insert "[SEP]"
tokens.append("[SEP]")
valid_positions.append(1)
segment_ids = []
for i in range(len(tokens)):
segment_ids.append(0)
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < self.max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
valid_positions.append(0)
return input_ids, input_mask, segment_ids, valid_positions
def predict(self, text: str):
input_ids, input_mask, segment_ids, valid_ids = self.preprocess(text)
input_ids = torch.tensor([input_ids], dtype=torch.long, device=self.device)
input_mask = torch.tensor([input_mask], dtype=torch.long, device=self.device)
segment_ids = torch.tensor([segment_ids], dtype=torch.long, device=self.device)
valid_ids = torch.tensor([valid_ids], dtype=torch.long, device=self.device)
with torch.no_grad():
logits = self.model(input_ids, segment_ids, input_mask, valid_ids)
logits = torch.nn.functional.softmax(logits, dim=2)
logits_label = torch.argmax(logits, dim=2)
logits_label = logits_label.detach().cpu().numpy().tolist()[0]
logits_confidence = [values[label].item() for values, label in zip(logits[0], logits_label)]
logits = []
pos = 0
for index, mask in enumerate(valid_ids[0]):
if index == 0:
continue
if mask == 1:
logits.append((logits_label[index - pos], logits_confidence[index - pos]))
else:
pos += 1
logits.pop()
labels = [(self.label_map[label], confidence) for label, confidence in logits]
words = word_tokenize(text)
assert len(labels) == len(words)
output = [{"word": word, "tag": label, "confidence": confidence} for word, (label, confidence) in
zip(words, labels)]
return output