-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcnn.py
executable file
·163 lines (124 loc) · 4.64 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
###
# File: cnn.py
# Created Date: Wednesday, January 8th 2020, 6:12:20 pm
# Author: Rabbit
# -------------------------
# Copyright (c) 2020 Rabbit
# --------------------------------------------------------------------
###
import os
import joblib
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, SubsetRandomSampler
from utils import u
from const import LOG_DIR, CNN_MODEL_FILE, LABELS_NUM
from dataset import ElectiveCaptchaDatasetFromPackage
CONFUSION_MATRIX_LOG_FILE = os.path.join(LOG_DIR, r"cnn.confusion_matrix.epoch_{}.csv")
class ElectiveCaptchaCNN(nn.Module):
def __init__(self):
super(ElectiveCaptchaCNN, self).__init__()
self.bn1 = nn.BatchNorm2d(32)
self.bn2 = nn.BatchNorm2d(64)
self.bn3 = nn.BatchNorm2d(128)
self.conv1 = nn.Conv2d(1, 32, 3)
self.conv2 = nn.Conv2d(32, 64, 3)
self.conv3 = nn.Conv2d(64, 128, 3)
self.fc1 = nn.Linear(512, 128)
self.fc2 = nn.Linear(128, LABELS_NUM) # 55
def forward(self, x):
x = self.conv1(x) # batch*32*20*20
x = self.bn1(x)
x = F.relu(x)
x = F.max_pool2d(x, 2) # batch*32*10*10
x = self.conv2(x) # batch*64*8*8
x = self.bn2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2) # batch*64*4*4
x = self.conv3(x) # batch*128*2*2
x = self.bn3(x)
x = F.relu(x)
x = torch.flatten(x, 1) # batch*512
x = self.fc1(x) # batch*128
x = F.relu(x)
x = self.fc2(x) # batch*55
x = F.log_softmax(x, dim=1)
return x
def train(model, train_loader, optimizer, epoch):
log_interval = int(len(train_loader) * 0.05)
model.train()
for ix, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if ix % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch,
ix * len(data),
len(train_loader.sampler),
100.0 * ix / len(train_loader),
loss.item()
))
def validate(model, validation_loader, epoch):
model.eval()
validation_loss = 0
correct = 0
confusion_matrix = np.zeros((LABELS_NUM, LABELS_NUM), dtype=np.int)
with torch.no_grad():
for Xlist, ylist in validation_loader:
output = model(Xlist)
validation_loss += F.nll_loss(output, ylist).item() / len(validation_loader.sampler)
ypred = output.argmax(dim=1, keepdim=True)
correct += ypred.eq(ylist.view_as(ypred)).sum().item()
for t, p in zip(ylist.view(-1), ypred.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
print('\nValidation set: Average loss: {:.6f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
validation_loss,
correct,
len(validation_loader.sampler),
100.0 * correct / len(validation_loader.sampler)
))
df = pd.DataFrame(
data=confusion_matrix,
index=validation_loader.dataset.labels,
columns=validation_loader.dataset.labels,
)
df.to_csv(CONFUSION_MATRIX_LOG_FILE.format(epoch))
def main():
RANDOM_STATE = 42
TRAIN_SIZE = 0.7
BATCH_SIZE = 128
EPOCHS = 5
LEARNING_RATE = 0.1
LR_STEP_SIZE = 1
LR_STEP_GAMMA = 0.15
dataset = ElectiveCaptchaDatasetFromPackage()
indices = np.arange(len(dataset))
np.random.seed(RANDOM_STATE)
np.random.shuffle(indices)
sep = int(len(dataset) * TRAIN_SIZE)
train_indices, validation_indices = indices[:sep], indices[sep:]
train_sampler = SubsetRandomSampler(train_indices)
validation_sampler = SubsetRandomSampler(validation_indices)
train_loader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
validation_loader = DataLoader(dataset, batch_size=BATCH_SIZE, sampler=validation_sampler)
model = ElectiveCaptchaCNN()
optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE)
scheduler = StepLR(optimizer, step_size=LR_STEP_SIZE, gamma=LR_STEP_GAMMA)
for epoch in range(1, EPOCHS+1):
train(model, train_loader, optimizer, epoch)
validate(model, validation_loader, epoch)
scheduler.step()
joblib.dump(model.state_dict(), CNN_MODEL_FILE, compress=9)
if __name__ == '__main__':
main()