forked from facebookresearch/esm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore_log_likelihoods.py
131 lines (112 loc) · 4.55 KB
/
score_log_likelihoods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Scores sequences based on a given structure.
#
# usage:
# score_log_likelihoods.py [-h] [--outpath OUTPATH] [--chain CHAIN] pdbfile seqfile
import argparse
from biotite.sequence.io.fasta import FastaFile, get_sequences
import numpy as np
from pathlib import Path
import torch
import torch.nn.functional as F
from tqdm import tqdm
import esm
import esm.inverse_folding
def score_singlechain_backbone(model, alphabet, args):
if torch.cuda.is_available() and not args.nogpu:
model = model.cuda()
print("Transferred model to GPU")
coords, native_seq = esm.inverse_folding.util.load_coords(args.pdbfile, args.chain)
print('Native sequence loaded from structure file:')
print(native_seq)
print('\n')
ll, _ = esm.inverse_folding.util.score_sequence(
model, alphabet, coords, native_seq)
print('Native sequence')
print(f'Log likelihood: {ll:.2f}')
print(f'Perplexity: {np.exp(-ll):.2f}')
print('\nScoring variant sequences from sequence file..\n')
infile = FastaFile()
infile.read(args.seqfile)
seqs = get_sequences(infile)
Path(args.outpath).parent.mkdir(parents=True, exist_ok=True)
with open(args.outpath, 'w') as fout:
fout.write('seqid,log_likelihood\n')
for header, seq in tqdm(seqs.items()):
ll, _ = esm.inverse_folding.util.score_sequence(
model, alphabet, coords, str(seq))
fout.write(header + ',' + str(ll) + '\n')
print(f'Results saved to {args.outpath}')
def score_multichain_backbone(model, alphabet, args):
if torch.cuda.is_available() and not args.nogpu:
model = model.cuda()
print("Transferred model to GPU")
structure = esm.inverse_folding.util.load_structure(args.pdbfile)
coords, native_seqs = esm.inverse_folding.multichain_util.extract_coords_from_complex(structure)
target_chain_id = args.chain
native_seq = native_seqs[target_chain_id]
print('Native sequence loaded from structure file:')
print(native_seq)
print('\n')
ll, _ = esm.inverse_folding.multichain_util.score_sequence_in_complex(
model, alphabet, coords, target_chain_id, native_seq)
print('Native sequence')
print(f'Log likelihood: {ll:.2f}')
print(f'Perplexity: {np.exp(-ll):.2f}')
print('\nScoring variant sequences from sequence file..\n')
infile = FastaFile()
infile.read(args.seqfile)
seqs = get_sequences(infile)
Path(args.outpath).parent.mkdir(parents=True, exist_ok=True)
with open(args.outpath, 'w') as fout:
fout.write('seqid,log_likelihood\n')
for header, seq in tqdm(seqs.items()):
ll, _ = esm.inverse_folding.multichain_util.score_sequence_in_complex(
model, alphabet, coords, target_chain_id, str(seq))
fout.write(header + ',' + str(ll) + '\n')
print(f'Results saved to {args.outpath}')
def main():
parser = argparse.ArgumentParser(
description='Score sequences based on a given structure.'
)
parser.add_argument(
'pdbfile', type=str,
help='input filepath, either .pdb or .cif',
)
parser.add_argument(
'seqfile', type=str,
help='input filepath for variant sequences in a .fasta file',
)
parser.add_argument(
'--outpath', type=str,
help='output filepath for scores of variant sequences',
default='output/sequence_scores.csv',
)
parser.add_argument(
'--chain', type=str,
help='chain id for the chain of interest', default='A',
)
parser.set_defaults(multichain_backbone=False)
parser.add_argument(
'--multichain-backbone', action='store_true',
help='use the backbones of all chains in the input for conditioning'
)
parser.add_argument(
'--singlechain-backbone', dest='multichain_backbone',
action='store_false',
help='use the backbone of only target chain in the input for conditioning'
)
parser.add_argument("--nogpu", action="store_true", help="Do not use GPU even if available")
args = parser.parse_args()
model, alphabet = esm.pretrained.esm_if1_gvp4_t16_142M_UR50()
model = model.eval()
if args.multichain_backbone:
score_multichain_backbone(model, alphabet, args)
else:
score_singlechain_backbone(model, alphabet, args)
if __name__ == '__main__':
main()