-
Notifications
You must be signed in to change notification settings - Fork 71
/
extract_features.m
executable file
·144 lines (119 loc) · 4.75 KB
/
extract_features.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
% simple script to extract CNN features from any layers of CNN for any given images
% written by Bolei Zhou.
% June 20, 2017
clear
% the location of the caffe you install
addpath('/yourpah/caffe/matlab'); % make sure you compile the matcaffe
root_features = 'mat_files'; % the location where you want to output the CNN features
root_model = 'model'; % the location where you put the CNN models
netID = 3;
device_id = 0; % GPU ID to use
% load the testing images
data_name = 'testset1';
root_images = 'data_features';
imageList = textread(fullfile(root_images, 'imagelist.txt'),'%s');
num_images = numel(imageList);
for i=1:num_images
imageList{i} = fullfile(root_images, imageList{i});
end
% select the CNN model
if netID == 1
network = 'caffe_reference_imagenet';
layers = {'conv5','conv4','conv3','conv2','conv1'};
batch_size = 128; % the batch size
elseif netID == 2
network = 'caffe_reference_places205';
layers = {'conv5','conv4','conv3','conv2','conv1'};
batch_size = 128;
elseif netID == 3
network = 'caffe_reference_imagenetplaces205';
layers = {'conv5','conv4','conv3','conv2','conv1'};
batch_size = 128;
elseif netID == 4
network = 'vgg16_places365'
layers = {'conv5_3','conv5_2','conv5_1','conv4_3','conv4_2','conv4_1','conv3_3','conv3_2','conv3_1','conv2_2','conv2_1','conv1_1'};
batch_size = 32;
end
net_prototxt = sprintf('%s/%s.prototxt', root_model, network);
net_binary = sprintf('%s/%s.caffemodel', root_model, network);
%% standard setup caffe
use_gpu = 1;
if(use_gpu)
caffe.set_mode_gpu();
caffe.set_device(device_id);
else
caffe.set_mode_cpu();
end
net = caffe.Net(net_prototxt, net_binary, 'test');
% Load images in parallel
if matlabpool('size')==0
try
matlabpool(6)
catch e
end
end
% Get the network architecture information
layernames = net.blob_names;
netInfo = cell(size(layernames,1),3);
for i=1:size(layernames,1)
netInfo{i,1} = layernames{i};
netInfo{i,2} = i;
tmp = net.blobs(layernames{i}).shape;
if tmp(1) == 1
tmp = tmp(3:end);
end
netInfo{i,3} = tmp;
end
IMAGE_MEAN = caffe.io.read_mean('model/places_mean.binaryproto');
CROPPED_DIM = netInfo{1,3}(1); % alexNet is 227, googlenet input is 224
IMAGE_MEAN = imresize(IMAGE_MEAN,[CROPPED_DIM CROPPED_DIM]);
num_batches = ceil(num_images / batch_size);
%% feature extraction step
num_layers = numel(layers);
num_units_layers = zeros(num_layers,1);
features_CNN = cell(num_layers,1); % the features
weights_CNN = cell(num_layers,1); % the parameters(weight) of each unit
for i=1:num_layers
layerID = find(strcmp(netInfo(:,1),layers{i}) == 1);
activation_struct = netInfo{layerID,3};
param_layer = net.params(layers{i},1).get_data();
activation_layer = net.blobs(layers{i}).get_data();
weights_CNN{i} = param_layer;
if size(activation_layer, 3) == 1
num_units = size(activation_layer, 1);
feature_layer = zeros(num_images, num_units, 'single'); % FC layer
else
num_units = size(activation_layer, 3);
feature_layer = zeros(num_images, size(activation_layer,3), size(activation_layer,1), size(activation_layer,2), 'single'); % spatial conv layer [num_images, num_unit, H, W], this variable could be very large, which results to Out Of Memory error in matlab.
end
features_CNN{i} = feature_layer;
num_units_layers(i) = num_units;
end
% reset the batch_size
inputSize_default = net.blobs('data').shape;
net.blobs('data').reshape([inputSize_default(1) inputSize_default(2) inputSize_default(3) batch_size]);
for curBatchID=1:num_batches
[imBatch] = generateBatch( imageList(:,1), curBatchID, batch_size, num_batches, IMAGE_MEAN, CROPPED_DIM);
scores = net.forward({imBatch});
curStartIDX = (curBatchID-1)*batch_size+1;
if curBatchID == num_batches
curEndIDX = num_images;
else
curEndIDX = curBatchID*batch_size;
end
for layerID = 1:num_layers
features_batch = net.blobs(layers{layerID}).get_data();
if size(features_batch,4) == 1
features_batch = features_batch';
features_CNN{layerID}(curStartIDX:curEndIDX,:) = features_batch(1:curEndIDX - curStartIDX + 1);
else
features_batch = permute(features_batch, [4 3 2 1]); % reshuffle this to [batch_size, num_units, H, W]
features_CNN{layerID}(curStartIDX:curEndIDX,:,:,:) = features_batch(1:curEndIDX - curStartIDX + 1, :, :, :);
end
end
disp([network ' feature extraction:' num2str(curBatchID) '/' num2str(num_batches)]);
end
file_save = fullfile(root_features,sprintf('features_%s_%s.mat', data_name, network));
disp(sprintf('features are output to %s', file_save));
save(file_save,'features_CNN','layers','netInfo', 'imageList', '-v7.3')
caffe.reset_all()