forked from nkszjx/SSCDnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
325 lines (253 loc) · 12.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import argparse
import scipy
from scipy import ndimage
import cv2
import numpy as np
import sys
from collections import OrderedDict
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data, model_zoo
#from deeplabv2 import Res_Deeplab
from deeplabv2_unsupervised import Deeplab_maxmin_model,Deeplab_maxmin_model_all
from data.voc_dataset import VOCDataSet,VOCDataTestSet, VOCDataTestSet_jpg
from data import get_data_path, get_loader
import torchvision.transforms as transform
from PIL import Image
import scipy.misc
from metric import ConfusionMatrix
IMG_MEAN = np.array((62.00698793,58.66876762,58.67891434 ), dtype=np.float32)
DATASET = 'pascal_voc' # pascal_context
MODEL = 'deeplabv2' # deeeplabv2, deeplabv3p
DATA_DIRECTORY = '/home/Semisup_cloudSemSeg_master/dataset_test/'
DATA_LIST_PATH = '/home/Semisup_cloudSemSeg_master/dataset_test/landsat8_evaluation.txt'
IGNORE_LABEL = 255
NUM_CLASSES = 2 # 60 for pascal context
GPU_NUMBER=0
W=1200
H=1200
os.environ['CUDA_VISIBLE_DEVICES']='6'
RESTORE_FROM = './checkpoints_class_alignment/SSCDnet/VOC_35000.pth'
#RESTORE_FROM = './checkpoints/voc_semi_4sGAN_original_threshold_5/VOC_50000.pth'
#RESTORE_FROM = './checkpoints/voc_semi_4sGAN_original_1/VOC_50000.pth'
#RESTORE_FROM = './checkpoints/voc_semi_4sGAN_original_dcrf_2.5/VOC_50000.pth'
PRETRAINED_MODEL = None
SAVE_DIRECTORY = './results_L8_SSCDnet/'
#os.environ['CUDA_VISIBLE_DEVICES']='1'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="VOC evaluation script")
parser.add_argument("--gpu", type=int, default=GPU_NUMBER,
help="choose gpu device.")
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab/DRN")
parser.add_argument("--dataset", type=str, default=DATASET,
help="dataset name pascal_voc or pascal_context")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-dir", type=str, default=SAVE_DIRECTORY,
help="Directory to store results")
parser.add_argument("--with-mlmt", action="store_true",
help="combine with Multi-Label Mean Teacher branch")
parser.add_argument("--save-output-images", action="store_false",
help="save output images")
parser.add_argument("--width", type=int, default=W,
help=" IMAGE width.")
parser.add_argument("--high", type=int, default=H,
help="IMAGE high.")
return parser.parse_args()
class Clou_Colorize(object):
def __init__(self, n=3):
self.cmap = color_map(3)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
size = gray_image.shape
color_image = np.zeros((3, size[0], size[1]), dtype=np.uint8)
for label in range(0, len(self.cmap)):
mask = (label == gray_image)
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
# handle void
mask = (255 == gray_image)
color_image[0][mask] = color_image[1][mask] = color_image[2][mask] = 255
return color_image
class VOCColorize(object):
def __init__(self, n=22):
self.cmap = color_map(22)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
size = gray_image.shape
color_image = np.zeros((3, size[0], size[1]), dtype=np.uint8)
for label in range(0, len(self.cmap)):
mask = (label == gray_image)
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
# handle void
mask = (255 == gray_image)
color_image[0][mask] = color_image[1][mask] = color_image[2][mask] = 255
return color_image
def color_map(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N): # 0,1,2,...,N-1
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
cmap = cmap/255 if normalized else cmap
return cmap
def get_label_vector(target, nclass):
# target is a 3D Variable BxHxW, output is 2D BxnClass
hist, _ = np.histogram(target, bins=nclass, range=(0, nclass-1))
vect = hist>0
vect_out = np.zeros((21,1))
for i in range(len(vect)):
if vect[i] == True:
vect_out[i] = 1
else:
vect_out[i] = 0
return vect_out
def get_iou(args, data_list, class_num, save_path=None):
from multiprocessing import Pool
ConfM = ConfusionMatrix(class_num)
f = ConfM.generateM
pool = Pool()
m_list = pool.map(f, data_list)
pool.close()
pool.join()
for m in m_list:
ConfM.addM(m)
aveJ, j_list, M = ConfM.jaccard()
if args.dataset == 'pascal_voc':
classes = np.array(('background', # always index 0
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'))
elif args.dataset == 'pascal_context':
classes = np.array(('background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'table', 'dog', 'horse', 'motorbike', 'person',
'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', 'bag', 'bed', 'bench', 'book', 'building', 'cabinet' , 'ceiling', 'cloth', 'computer', 'cup',
'door', 'fence', 'floor', 'flower', 'food', 'grass', 'ground', 'keyboard', 'light', 'mountain', 'mouse', 'curtain', 'platform', 'sign', 'plate',
'road', 'rock', 'shelves', 'sidewalk', 'sky', 'snow', 'bedclothes', 'track', 'tree', 'truck', 'wall', 'water', 'window', 'wood'))
# elif args.dataset == 'cityscapes':
# classes = np.array(("road", "sidewalk",
# "building", "wall", "fence", "pole",
# "traffic_light", "traffic_sign", "vegetation",
# "terrain", "sky", "person", "rider",
# "car", "truck", "bus",
# "train", "motorcycle", "bicycle"))
for i, iou in enumerate(j_list):
print('class {:2d} {:12} IU {:.2f}'.format(i, classes[i], j_list[i]))
print('meanIOU: ' + str(aveJ) + '\n')
if save_path:
with open(save_path, 'w') as f:
for i, iou in enumerate(j_list):
f.write('class {:2d} {:12} IU {:.2f}'.format(i, classes[i], j_list[i]) + '\n')
f.write('meanIOU: ' + str(aveJ) + '\n')
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
#gpu0 = args.gpu
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print('save_dir'+ args.save_dir)
model = Deeplab_maxmin_model_all(num_classes=args.num_classes)
model.cuda()
# if args.restore_from[:4] == 'http' :
# saved_state_dict = model_zoo.load_url(args.restore_from)
# else:
# saved_state_dict = torch.load(args.restore_from)
saved_state_dict = torch.load(args.restore_from) # load model parameters path
model.load_state_dict(saved_state_dict) # load the model parameters to the network
model.eval() # test stage
model.cuda() # using GPU
#model.cuda()
# load image for test
if args.dataset == 'pascal_voc':
# testloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, crop_size=(321, 321), mean=IMG_MEAN, scale=False, mirror=False),
# batch_size=1, shuffle=False, pin_memory=True)
testloader = data.DataLoader(VOCDataTestSet_jpg(args.data_dir, args.data_list, crop_size=(args.width, args.high), mean=IMG_MEAN),
batch_size=1, shuffle=False, pin_memory=True)
interp = nn.Upsample(size=(args.width, args.high), mode='bilinear', align_corners=True)
elif args.dataset == 'pascal_context':
input_transform = transform.Compose([transform.ToTensor(),
transform.Normalize([.485, .456, .406], [.229, .224, .225])])
# data_kwargs = {'transform': input_transform, 'base_size': 512, 'crop_size': 512}
# data_loader = get_loader('pascal_context')
# data_path = get_data_path('pascal_context')
# test_dataset = data_loader(data_path, split='val', mode='val', **data_kwargs)
# testloader = data.DataLoader(test_dataset, batch_size=1, drop_last=False, shuffle=False, num_workers=1, pin_memory=True)
# interp = nn.Upsample(size=(512, 512), mode='bilinear', align_corners=True)
# elif args.dataset == 'cityscapes':
# data_loader = get_loader('cityscapes')
# data_path = get_data_path('cityscapes')
# test_dataset = data_loader( data_path, img_size=(512, 1024), is_transform=True, split='val')
# testloader = data.DataLoader(test_dataset, batch_size=1, shuffle=False, pin_memory=True)
# interp = nn.Upsample(size=(512, 1024), mode='bilinear', align_corners=True)
data_list = []
colorize = Clou_Colorize()
if args.with_mlmt:
mlmt_preds = np.loadtxt('./mlmt_output/output_ema_p_1_0_voc_5.txt', dtype = float) # best mt 0.05
mlmt_preds[mlmt_preds>=0.2] = 1
mlmt_preds[mlmt_preds<0.2] = 0
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd'%(index))
#image, label, size, name, _ = batch
image, size, name = batch
size = size[0]
with torch.no_grad():
output, _, _, _, _ = model(Variable(image).cuda()) # model test
#output = model(Variable(image).cuda()) # model test
output = interp(output).cpu().data[0].numpy() # resize the output result as the same size as the input image
# if args.dataset == 'pascal_voc':
# output = output[:,:size[0],:size[1]]
# gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int)
# elif args.dataset == 'pascal_context':
# gt = np.asarray(label[0].numpy(), dtype=np.int)
# elif args.dataset == 'cityscapes':
# gt = np.asarray(label[0].numpy(), dtype=np.int)
if args.with_mlmt:
for i in range(args.num_classes):
output[i]= output[i]*mlmt_preds[index][i]
output = output.transpose(1,2,0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.int)
if args.save_output_images:
if args.dataset == 'pascal_voc':
filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
color_file = Image.fromarray(colorize(output).transpose(1, 2, 0), 'RGB')
color_file.save(filename)
# if index % 50 == 0:
# print('save images to:' + args.save_dir)
elif args.dataset == 'pascal_context':
filename = os.path.join(args.save_dir, filename[0])
# scipy.misc.imsave(filename, gt)
#data_list.append([gt.flatten(), output.flatten()])
#filename = os.path.join(args.save_dir, 'result.txt')
#get_iou(args, data_list, args.num_classes, filename)
if __name__ == '__main__':
main()