forked from nkszjx/TreeSegment_SA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deeplabv3plus.py
376 lines (292 loc) · 13.4 KB
/
deeplabv3plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Pyramid Scene Parsing Network"""
"""
This is the implementation of DeepLabv3+ without multi-scale inputs. This implementation uses ResNet-101 by default.
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils import data, model_zoo
from torch.autograd import Variable
import math
import numpy as np
affine_par = True
from torch.autograd import Function
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, affine = affine_par)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, affine = affine_par)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes,affine = affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
padding = dilation
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=padding, bias=False, dilation = dilation)
self.bn2 = nn.BatchNorm2d(planes,affine = affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par)
for i in self.bn3.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Classifier_Module(nn.Module):
def __init__(self, dilation_series, padding_series, num_classes):
super(Classifier_Module, self).__init__()
self.conv2d_list = nn.ModuleList()
for dilation, padding in zip(dilation_series, padding_series):
self.conv2d_list.append(nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias = True))
for m in self.conv2d_list:
m.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.conv2d_list[0](x)
for i in range(len(self.conv2d_list)-1):
out += self.conv2d_list[i+1](x)
return out
class _ConvBNReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d):
super(_ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = norm_layer(out_channels)
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class _ASPPConv(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
super(_ASPPConv, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
return self.block(x)
class _AsppPooling(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer):
super(_AsppPooling, self).__init__()
self.gap = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
size = x.size()[2:]
pool = self.gap(x)
out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
return out
class _ASPP(nn.Module):
def __init__(self, in_channels, atrous_rates, norm_layer):
super(_ASPP, self).__init__()
out_channels = 256
self.b0 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
rate1, rate2, rate3 = tuple(atrous_rates)
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
self.project = nn.Sequential(
nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True),
nn.Dropout(0.5)
)
def forward(self, x):
feat1 = self.b0(x)
feat2 = self.b1(x)
feat3 = self.b2(x)
feat4 = self.b3(x)
feat5 = self.b4(x)
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
x = self.project(x)
return x
class _DeepLabHead(nn.Module):
def __init__(self, num_classes, c1_channels=256, norm_layer=nn.BatchNorm2d):
super(_DeepLabHead, self).__init__()
self.aspp = _ASPP(2048, [12, 24, 36], norm_layer=norm_layer )
self.c1_block = _ConvBNReLU(c1_channels, 48, 3, padding=1, norm_layer=norm_layer)
self.block = nn.Sequential(
_ConvBNReLU(304, 256, 3, padding=1, norm_layer=norm_layer),
nn.Dropout(0.5),
_ConvBNReLU(256, 256, 3, padding=1, norm_layer=norm_layer),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, 1))
def forward(self, x, c1):
size = c1.size()[2:]
c1 = self.c1_block(c1)
x = self.aspp(x)
x = F.interpolate(x, size, mode='bilinear', align_corners=True)
return self.block(torch.cat([x, c1], dim=1))
class DeeplabV3_plus(nn.Module):
def __init__(self, block, layers, num_classes, aux=True):
self.inplanes = 64
self.aux = aux
super(DeeplabV3_plus, self).__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, affine = affine_par)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(64, affine = affine_par)
self.relu = nn.ReLU(inplace=True)
for i in self.bn1.parameters():
i.requires_grad = False
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
#self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)
self.classifier_1 = nn.Conv2d(1024, num_classes, kernel_size=1, stride=1, bias=True)
self.classifier_2 = nn.Conv2d(2048, num_classes, kernel_size=1, stride=1, bias=True)
self.head = _DeepLabHead(num_classes)
self.dsn = nn.Sequential(
nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.Dropout2d(0.1),
nn.Conv2d(512, num_classes, kernel_size=1, stride=1, padding=0, bias=True)
)
self.dsn2 = nn.Sequential(
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.Dropout2d(0.1),
nn.Conv2d(128, num_classes, kernel_size=1, stride=1, padding=0, bias=True)
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# for i in m.parameters():
# i.requires_grad = False
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion,affine = affine_par))
for i in downsample._modules['1'].parameters():
i.requires_grad = False
layers = []
layers.append(block(self.inplanes, planes, stride,dilation=dilation, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
# return block(dilation_series,padding_series,num_classes)
def base_forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
x = self.relu(self.bn2(self.conv2(x)))
x = self.relu(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x = self.layer1(x)
low_level_feat = x
x = self.layer2(x)
x = self.layer3(x)
mid_level_feat = x
#x_dsn = self.dsn(x)
x = self.layer4(x)
#x = self.head(x, low_level_feat)
return x, low_level_feat, mid_level_feat
def forward(self, x):
size = x.size()[2:]
final, low, mid = self.base_forward(x)
outputs1 = self.head(final, low)
outputs1 = F.interpolate(outputs1, size, mode='bilinear', align_corners=True)
if self.aux:
auxout_mid = self.dsn(mid)
auxout_mid = F.interpolate(auxout_mid, size, mode='bilinear', align_corners=True)
auxout_low = self.dsn2(low)
auxout_low = F.interpolate(auxout_low, size, mode='bilinear', align_corners=True)
return outputs1, auxout_mid, auxout_low
def get_1x_lr_params_NOscale(self):
"""
This generator returns all the parameters of the net except for
the last classification layer. Note that for each batchnorm layer,
requires_grad is set to False in deeplab_resnet.py, therefore this function does not return
any batchnorm parameter
"""
b = []
b.append(self.conv1)
b.append(self.bn1)
b.append(self.layer1)
b.append(self.layer2)
b.append(self.layer3)
b.append(self.layer4)
b.append(self.dsn)
b.append(self.head)
for i in range(len(b)):
for j in b[i].modules():
jj = 0
for k in j.parameters():
jj+=1
if k.requires_grad:
yield k
def optim_parameters(self, args):
return [{'params': self.get_1x_lr_params_NOscale(), 'lr': args.learning_rate}]
def DeeplabV3plus(num_classes=21):
model = DeeplabV3_plus(Bottleneck,[3, 4, 23, 3], num_classes) # restnet101 [3, 4, 23, 3] #restnet50 [3, 4, 6, 3]
return model
def Res50_DeeplabV3plus(num_classes=21):
model = DeeplabV3_plus(Bottleneck,[3, 4, 6, 3], num_classes) # restnet101 [3, 4, 23, 3] #restnet50 [3, 4, 6, 3]
return model