forked from nkszjx/TreeSegment_SA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
173 lines (119 loc) · 5.52 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import scipy
from scipy import ndimage
import cv2
import numpy as np
import sys
from collections import OrderedDict
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
from torch.utils import data, model_zoo
from deeplabv3plus import DeeplabV3plus, Res50_DeeplabV3plus
from data.voc_dataset import VOCDataSet,VOCDataTestSet
from data import get_data_path, get_loader
import torchvision.transforms as transform
from PIL import Image
import scipy.misc
from metric import ConfusionMatrix
IMG_MEAN = np.array((102.2058,110.1798,120.2015), dtype=np.float32)
DATA_DIRECTORY = './Train_dataset/'
DATA_LIST_PATH = './Train_dataset/test_list.txt'
NUM_CLASSES = 2 #
RESTORE_FROM = './checkpoints/semi_res101deeplabv3plus/VOC_60000.pth'
SAVE_DIRECTORY = './results/'
os.environ['CUDA_VISIBLE_DEVICES']='0'
#interp = nn.Upsample(size=(1200, 1200), mode='bilinear', align_corners=True)
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="VOC evaluation script")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-dir", type=str, default=SAVE_DIRECTORY,
help="Directory to store results")
parser.add_argument("--with-mlmt", action="store_true",
help="combine with Multi-Label Mean Teacher branch")
parser.add_argument("--save-output-images", action="store_false",
help="save output images")
return parser.parse_args()
class Clou_Colorize(object):
def __init__(self, n=4):
self.cmap = color_map(4)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
size = gray_image.shape
color_image = np.zeros((3, size[0], size[1]), dtype=np.uint8)
for label in range(0, len(self.cmap)):
mask = (label == gray_image)
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
# handle void
mask = (255 == gray_image)
color_image[0][mask] = color_image[1][mask] = color_image[2][mask] = 255
return color_image
def color_map(N=256, normalized=False):
def bitget(byteval, idx):
return ((byteval & (1 << idx)) != 0)
dtype = 'float32' if normalized else 'uint8'
cmap = np.zeros((N, 3), dtype=dtype)
for i in range(N): # 0,1,2,...,N-1
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << 7-j)
g = g | (bitget(c, 1) << 7-j)
b = b | (bitget(c, 2) << 7-j)
c = c >> 3
cmap[i] = np.array([r, g, b])
cmap = cmap/255 if normalized else cmap
return cmap
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
#gpu0 = args.gpu
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print('save_dir'+ args.save_dir)
model = DeeplabV3plus(num_classes=args.num_classes)
# DeeplabV3plus(num_classes=args.num_classes) Res50_DeeplabV3plus(num_classes=args.num_classes)
model.cuda()
saved_state_dict = torch.load(args.restore_from) # load model parameters path
model.load_state_dict(saved_state_dict) # load the model parameters to the network
model.eval() # test stage
model.cuda() # using GPU
# load image for test
testloader = data.DataLoader(VOCDataTestSet(args.data_dir, args.data_list, mean=IMG_MEAN),
batch_size=1, shuffle=False, pin_memory=True)
#interp = nn.Upsample(size=(1200, 1200), mode='bilinear', align_corners=True)
interp = nn.Upsample(size=(980, 1880), mode='bilinear', align_corners=True)
#data_list = []
colorize = Clou_Colorize()
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd'%(index))
image, size, name = batch
size = size[0]
with torch.no_grad():
output,_ = model(Variable(image).cuda()) # model test
output = interp(output).cpu().data[0].numpy() # resize the output result as the same size as the input image
output = output.transpose(1,2,0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.int)
if args.save_output_images:
filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
color_file = Image.fromarray(colorize(output).transpose(1, 2, 0), 'RGB')
color_file.save(filename)
if __name__ == '__main__':
main()