Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Switch to tiktoken-based tokenizer #3

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ numpy
torch
tqdm
more-itertools
tiktoken==0.3.3
transformers>=4.19.0
ffmpeg-python==0.2.0
openvino>=2023.1.0
386 changes: 386 additions & 0 deletions whisper/assets/gpt2.tiktoken
Original file line number Diff line number Diff line change
@@ -0,0 +1,386 @@
import base64
import os
import string
from dataclasses import dataclass, field
from functools import cached_property, lru_cache
from typing import Dict, List, Optional, Tuple

import tiktoken

LANGUAGES = {
"en": "english",
"zh": "chinese",
"de": "german",
"es": "spanish",
"ru": "russian",
"ko": "korean",
"fr": "french",
"ja": "japanese",
"pt": "portuguese",
"tr": "turkish",
"pl": "polish",
"ca": "catalan",
"nl": "dutch",
"ar": "arabic",
"sv": "swedish",
"it": "italian",
"id": "indonesian",
"hi": "hindi",
"fi": "finnish",
"vi": "vietnamese",
"he": "hebrew",
"uk": "ukrainian",
"el": "greek",
"ms": "malay",
"cs": "czech",
"ro": "romanian",
"da": "danish",
"hu": "hungarian",
"ta": "tamil",
"no": "norwegian",
"th": "thai",
"ur": "urdu",
"hr": "croatian",
"bg": "bulgarian",
"lt": "lithuanian",
"la": "latin",
"mi": "maori",
"ml": "malayalam",
"cy": "welsh",
"sk": "slovak",
"te": "telugu",
"fa": "persian",
"lv": "latvian",
"bn": "bengali",
"sr": "serbian",
"az": "azerbaijani",
"sl": "slovenian",
"kn": "kannada",
"et": "estonian",
"mk": "macedonian",
"br": "breton",
"eu": "basque",
"is": "icelandic",
"hy": "armenian",
"ne": "nepali",
"mn": "mongolian",
"bs": "bosnian",
"kk": "kazakh",
"sq": "albanian",
"sw": "swahili",
"gl": "galician",
"mr": "marathi",
"pa": "punjabi",
"si": "sinhala",
"km": "khmer",
"sn": "shona",
"yo": "yoruba",
"so": "somali",
"af": "afrikaans",
"oc": "occitan",
"ka": "georgian",
"be": "belarusian",
"tg": "tajik",
"sd": "sindhi",
"gu": "gujarati",
"am": "amharic",
"yi": "yiddish",
"lo": "lao",
"uz": "uzbek",
"fo": "faroese",
"ht": "haitian creole",
"ps": "pashto",
"tk": "turkmen",
"nn": "nynorsk",
"mt": "maltese",
"sa": "sanskrit",
"lb": "luxembourgish",
"my": "myanmar",
"bo": "tibetan",
"tl": "tagalog",
"mg": "malagasy",
"as": "assamese",
"tt": "tatar",
"haw": "hawaiian",
"ln": "lingala",
"ha": "hausa",
"ba": "bashkir",
"jw": "javanese",
"su": "sundanese",
}

# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
**{language: code for code, language in LANGUAGES.items()},
"burmese": "my",
"valencian": "ca",
"flemish": "nl",
"haitian": "ht",
"letzeburgesch": "lb",
"pushto": "ps",
"panjabi": "pa",
"moldavian": "ro",
"moldovan": "ro",
"sinhalese": "si",
"castilian": "es",
}


@dataclass
class Tokenizer:
"""A thin wrapper around `tiktoken` providing quick access to special tokens"""

encoding: tiktoken.Encoding
language: Optional[str] = None
task: Optional[str] = None
sot_sequence: Tuple[int] = ()
special_tokens: Dict[str, int] = field(default_factory=dict)

def __post_init__(self):
for special in self.encoding.special_tokens_set:
special_token = self.encoding.encode_single_token(special)
self.special_tokens[special] = special_token

sot: int = self.special_tokens["<|startoftranscript|>"]
translate: int = self.special_tokens["<|translate|>"]
transcribe: int = self.special_tokens["<|transcribe|>"]

langs = tuple(LANGUAGES.keys())
sot_sequence = [sot]
if self.language is not None:
sot_sequence.append(sot + 1 + langs.index(self.language))
if self.task is not None:
task_token: int = transcribe if self.task == "transcribe" else translate
sot_sequence.append(task_token)

self.sot_sequence = tuple(sot_sequence)

def encode(self, text, **kwargs):
return self.encoding.encode(text, **kwargs)

def decode(self, token_ids: List[int], **kwargs) -> str:
token_ids = [t for t in token_ids if t < self.timestamp_begin]
return self.encoding.decode(token_ids, **kwargs)

def decode_with_timestamps(self, token_ids: List[int], **kwargs) -> str:
"""
Timestamp tokens are above other special tokens' id range and are ignored by `decode()`.
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
"""
return self.encoding.decode(token_ids, **kwargs)

@cached_property
def eot(self) -> int:
return self.encoding.eot_token

@cached_property
def transcribe(self) -> int:
return self.special_tokens["<|transcribe|>"]

@cached_property
def translate(self) -> int:
return self.special_tokens["<|translate|>"]

@cached_property
def sot(self) -> int:
return self.special_tokens["<|startoftranscript|>"]

@cached_property
def sot_lm(self) -> int:
return self.special_tokens["<|startoflm|>"]

@cached_property
def sot_prev(self) -> int:
return self.special_tokens["<|startofprev|>"]

@cached_property
def no_speech(self) -> int:
return self.special_tokens["<|nospeech|>"]

@cached_property
def no_timestamps(self) -> int:
return self.special_tokens["<|notimestamps|>"]

@cached_property
def timestamp_begin(self) -> int:
return self.special_tokens["<|0.00|>"]

@cached_property
def language_token(self) -> int:
"""Returns the token id corresponding to the value of the `language` field"""
if self.language is None:
raise ValueError("This tokenizer does not have language token configured")

if token := self.special_tokens.get(f"<|{self.language}|>", None):
return token

raise KeyError(f"Language {self.language} not found in tokenizer.")

@cached_property
def all_language_tokens(self) -> Tuple[int]:
result = []
for token, token_id in self.special_tokens.items():
if token.strip("<|>") in LANGUAGES:
result.append(token_id)
return tuple(result)

@cached_property
def all_language_codes(self) -> Tuple[str]:
return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)

@cached_property
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
return tuple(list(self.sot_sequence) + [self.no_timestamps])

@cached_property
def non_speech_tokens(self) -> Tuple[int]:
"""
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.

- ♪♪♪
- ( SPEAKING FOREIGN LANGUAGE )
- [DAVID] Hey there,

keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
"""
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
symbols += (
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
)

# symbols that may be a single token or multiple tokens depending on the tokenizer.
# In case they're multiple tokens, suppress the first token, which is safe because:
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)

# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [
self.encoding.encode(symbol),
self.encoding.encode(" " + symbol),
]:
if len(tokens) == 1 or symbol in miscellaneous:
result.add(tokens[0])

return tuple(sorted(result))

def split_to_word_tokens(self, tokens: List[int]):
if self.language in {"zh", "ja", "th", "lo", "my"}:
# These languages don't typically use spaces, so it is difficult to split words
# without morpheme analysis. Here, we instead split words at any
# position where the tokens are decoded as valid unicode points
return self.split_tokens_on_unicode(tokens)

return self.split_tokens_on_spaces(tokens)

def split_tokens_on_unicode(self, tokens: List[int]):
decoded_full = self.decode_with_timestamps(tokens)
replacement_char = "\ufffd"

words = []
word_tokens = []
current_tokens = []
unicode_offset = 0

for token in tokens:
current_tokens.append(token)
decoded = self.decode_with_timestamps(current_tokens)

if (
replacement_char not in decoded
or decoded_full[unicode_offset + decoded.index(replacement_char)]
== replacement_char
):
words.append(decoded)
word_tokens.append(current_tokens)
current_tokens = []
unicode_offset += len(decoded)

return words, word_tokens

def split_tokens_on_spaces(self, tokens: List[int]):
subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
words = []
word_tokens = []

for subword, subword_tokens in zip(subwords, subword_tokens_list):
special = subword_tokens[0] >= self.eot
with_space = subword.startswith(" ")
punctuation = subword.strip() in string.punctuation
if special or with_space or punctuation or len(words) == 0:
words.append(subword)
word_tokens.append(subword_tokens)
else:
words[-1] = words[-1] + subword
word_tokens[-1].extend(subword_tokens)

return words, word_tokens


@lru_cache(maxsize=None)
def get_encoding(name: str = "gpt2"):
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
ranks = {
base64.b64decode(token): int(rank)
for token, rank in (line.split() for line in open(vocab_path) if line)
}
n_vocab = len(ranks)
special_tokens = {}

specials = [
"<|endoftext|>",
"<|startoftranscript|>",
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
"<|translate|>",
"<|transcribe|>",
"<|startoflm|>",
"<|startofprev|>",
"<|nospeech|>",
"<|notimestamps|>",
*[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
]

for token in specials:
special_tokens[token] = n_vocab
n_vocab += 1

return tiktoken.Encoding(
name=os.path.basename(vocab_path),
explicit_n_vocab=n_vocab,
pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
mergeable_ranks=ranks,
special_tokens=special_tokens,
)


@lru_cache(maxsize=None)
def get_tokenizer(
multilingual: bool,
*,
language: Optional[str] = None,
task: Optional[str] = None, # Literal["transcribe", "translate", None]
) -> Tokenizer:
if language is not None:
language = language.lower()
if language not in LANGUAGES:
if language in TO_LANGUAGE_CODE:
language = TO_LANGUAGE_CODE[language]
else:
raise ValueError(f"Unsupported language: {language}")

if multilingual:
encoding_name = "multilingual"
language = language or "en"
task = task or "transcribe"
else:
encoding_name = "gpt2"
language = None
task = None

encoding = get_encoding(name=encoding_name)

return Tokenizer(encoding=encoding, language=language, task=task)
Loading