This is the source code of our proposed method ICCV2023 paper "Towards effective instance discrimination contrastive loss for unsupervised domain adaptation".
The project structure is presented as follows
|ICCV2023/
├──configs
| ├──_base_
| ├──fixmatch_srcmix_officehome
| ├──fixmatch_srcmix_gvb_officehome
├──data
├──runs
├──clsda
| ├──loader
| ├──models
| ├──runner
| ├──trainers
├──experiments
config: training configs files for different experiments
data: contain dataset images and labels
runs: automatically created which stores checkpoints, tensorboard and text logging files
clsda: source code of our method
experiments: training scripts
Below are the structure under data.
│officehome/
├──Art/
│ ├── Alarm_Clock
│ │ ├── 00001.jpg
│ │ ├── 00002.jpg
│ │ ├── ......
│ ├── Backpack
│ │ ├── 00001.jpg
│ │ ├── 00002.jpg
│ │ ├── ......
│ ├── ......
├──Clipart/
│ ├── Alarm_Clock
│ │ ├── 00001.jpg
│ │ ├── 00002.jpg
│ │ ├── ......
│ ├── Backpack
│ │ ├── 00001.jpg
│ │ ├── 00002.jpg
│ │ ├── ......
│ ├── ......
│txt/
├──officehome/
│ ├── labeled_source_images_Art.txt
│ ├── unlabeled_target_images_Clipart_0.txt
| ├── unlabeled_target_images_Clipart_1.txt
| ├── unlabeled_target_images_Clipart_3.txt
-
Model definition:
./clsda/models/cls_models/srcmix_contrastive_model.py (for SSDA)
./clsda/models/cls_models/gvb_srcmix_contrastive_model.py (for UDA)
-
Training process:
clsda/trainers/trainer_fixmatch_srcmix.py (for SSDA)
./clsda/trainers/trainer_fixmatch_gvb_srcmix.py (for UDA)
-
Loss Definition
Our contrastive loss is defined within each trainer, such as contrastive_loss in trainer_fixmatch_hda_srcmix.py file.
CUDA_VISIBLE_DEVICES=0,1 bash ./experiments/scripts/uda_fixmatch_gvb_srcmix_train.sh exp ./configs/gvb/gvb_officehome_A_C_fixmatch_nce.py
@inproceedings{zhang2023eidco,
title={Towards effective instance discrimination contrastive loss for unsupervised domain adaptation},
author={Zhang, Yixin and Wang, Zilei and Li, Junjie and Zhuang, Jiafan and Lin, Zihan},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={11388--11399},
year={2023}
}