-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train.py
83 lines (75 loc) · 2.7 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#This file provides a wrapper as an example on how to use RMDA.
#In this example, we train sparse neural networks using either L1-regularization
#(for unstructured sparsity considered in pruning) or group-LASSO regularization
#(for structured sparsity that groups outgoing weights of each neuron
#separately, and treats each channel in a convolutional layer as a group).
import torch
from RMDA.Optimizer.rmda import RMDA
from RMDA.ProxFn.prox_fns import prox_glasso, prox_l1
from RMDA.ParamScheduler.param_scheduler import MultiStepParam
def train(training_dataloader,
model,
criterion,