-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
293 lines (249 loc) · 12 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Optional
class MlpTransformer(nn.Module):
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=F.relu, dropout=0.):
super().__init__()
out_d = out_d if out_d is not None else in_dim
self.fc1 = nn.Linear(in_dim, h_dim)
self.act = act
self.fc2 = nn.Linear(h_dim, out_d)
self.dropout = nn.Dropout(dropout)
def __call__(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim_self // num_heads
self.scale = head_dim ** -0.5
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
self.project = nn.Linear(dim_self, dim_self)
self.dropout = nn.Dropout(dropout)
def __call__(self, x, y=None, mask=None):
y = y if y is not None else x
b, n, c = x.shape
_, m, d = y.shape
# b n h dh
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
# b m 2 h dh
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
if mask is not None:
if mask.dim() == 2:
mask = mask.unsqueeze(1)
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
attention = attention.softmax(dim=2)
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
out = self.project(out)
return out, attention
class MultiHeadAttentionQKV(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim_self // num_heads
self.scale = head_dim ** -0.5
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
self.to_keys = nn.Linear(dim_ref, dim_self, bias=bias)
self.to_values = nn.Linear(dim_ref, dim_self, bias=bias)
self.project = nn.Linear(dim_self, dim_self)
self.dropout = nn.Dropout(dropout)
def __call__(self, q, k, v, mask=False):
b, n, c = q.shape
_, m, d = k.shape
# b n h dh
queries = self.to_queries(q).reshape(b, n, self.num_heads, c // self.num_heads)
# b m 2 h dh
keys = self.to_keys(k).reshape(b, m, self.num_heads, c // self.num_heads)
values = self.to_values(v).reshape(b, m, self.num_heads, c // self.num_heads)
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
if mask:
mask = torch.eye(n, dtype=torch.bool).cuda()
mask = mask.unsqueeze(0)
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
attention = attention.softmax(dim=2)
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
out = self.project(out)
return out, attention
class TransformerLayerQKV(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=F.relu):
super().__init__()
self.norm1 = nn.LayerNorm(dim_self)
self.attn = MultiHeadAttentionQKV(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
self.norm2 = nn.LayerNorm(dim_self)
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
def __call__(self, input, mask=False, pos=0):
(q, k, v) = input
x = input[pos]
x = x + self.attn(self.norm1(q), k, v, mask)[0]
x = x + self.mlp(self.norm2(x))
return x
class TransformerLayer(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=F.relu):
super().__init__()
self.norm1 = nn.LayerNorm(dim_self)
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
self.norm2 = nn.LayerNorm(dim_self)
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
def __call__(self, x, y=None, mask=None):
x = x + self.attn(self.norm1(x), y, mask)[0]
x = x + self.mlp(self.norm2(x))
return x
class Transformer(nn.Module):
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=F.relu, enc_dec: bool = False):
super(Transformer, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
self.enc_dec = enc_dec
if enc_dec:
num_layers = num_layers * 2
layers = []
for i in range(num_layers):
if i % 2 == 0 and enc_dec: # cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act))
elif enc_dec: # self
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act))
else: # self or cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act))
self.layers = nn.ModuleList(layers)
def __call__(self, x, y=None, mask=None):
for i, layer in enumerate(self.layers):
if i % 2 == 0 and self.enc_dec: # cross
x = layer(x, y)
elif self.enc_dec: # self
x = layer(x, x, mask)
else: # self or cross
x = layer(x, y, mask)
return x
class TransformerPos(nn.Module):
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=F.relu):
super(TransformerPos, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
layers = []
for i in range(num_layers):
# 1st-layer self
layers.append(TransformerLayerQKV(dim_self, dim_self, num_heads, mlp_ratio, act=act))
# 2nd-layer pos
layers.append(TransformerLayerQKV(dim_self, dim_self, num_heads, mlp_ratio, act=act))
# 3rd-layer cross
layers.append(TransformerLayerQKV(dim_self, dim_ref, num_heads, mlp_ratio, act=act))
self.layers = nn.ModuleList(layers)
def __call__(self, dec, pos, enc):
for i, layer in enumerate(self.layers):
if i % 3 == 0: # self
dec = layer((dec, dec, dec), mask=True)
elif (i+1) % 3 == 0: # cross
dec = layer((dec, enc, enc), mask=False)
else: # pos
dec = layer((pos, pos, dec), mask=True, pos=2)
return dec
class PositionEmbeddingLearned(nn.Module):
def __init__(self, num_pos_feats=256, res_length=28):
super().__init__()
self.row_embed = nn.Embedding(res_length, num_pos_feats)
self.col_embed = nn.Embedding(res_length, num_pos_feats)
self.reset_parameters()
self.num_pos_feats = num_pos_feats
self.res_len = res_length
def reset_parameters(self):
nn.init.uniform_(self.row_embed.weight)
nn.init.uniform_(self.col_embed.weight)
def forward(self, device):
i = torch.arange(self.res_len, device=device)
j = torch.arange(self.res_len, device=device)
x_emb = self.col_embed(i)
y_emb = self.row_embed(j)
pos = torch.cat([
x_emb.unsqueeze(0).repeat(self.res_len, 1, 1),
y_emb.unsqueeze(1).repeat(1, self.res_len, 1),
], dim=-1).view(-1, self.num_pos_feats*2).unsqueeze(0)
return pos
class NATransformerPos(nn.Module):
def __init__(self, dim_hidden: int, num_heads: int, num_layers: int = 8,
res_length: int = 14, dim_ref: int = 512):
super(NATransformerPos, self).__init__()
self.res_length = res_length
self.transformer = TransformerPos(dim_hidden, num_heads, num_layers, dim_ref=dim_ref)
self.ln_final = nn.LayerNorm(dim_hidden)
self.pos_embedding = PositionEmbeddingLearned(dim_hidden//2, res_length)
def __call__(self, x, y):
bs = x.size(0)
pos = self.pos_embedding(x.device).repeat(bs, 1, 1)
x = self.transformer(x, pos, y) # (B, 256, 1024)
x = self.ln_final(x)
return x
class TransformerAddPos(nn.Module):
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=F.relu, enc_dec: bool = False):
super(TransformerAddPos, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
self.enc_dec = enc_dec
if enc_dec:
num_layers = num_layers * 2
layers = []
self.pos_embedding = PositionEmbeddingLearned(dim_self//2, 16)
for i in range(num_layers):
if i % 2 == 0 and enc_dec: # cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act))
elif enc_dec: # self
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act))
else: # self or cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act))
self.layers = nn.ModuleList(layers)
def __call__(self, x, y=None, mask=None):
bs = x.size(0)
pos = self.pos_embedding(x.device).repeat(bs, 1, 1)
x = x + pos
for i, layer in enumerate(self.layers):
if i % 2 == 0 and self.enc_dec: # cross
x = layer(x, y)
elif self.enc_dec: # self
x = layer(x, x, mask)
else: # self or cross
x = layer(x, y, mask)
return x
class TransformerMapper(nn.Module):
def __init__(self, dim_hidden: int, num_heads: int, num_layers: int = 8, clip_length: int = 1):
super(TransformerMapper, self).__init__()
self.transformer = Transformer(dim_hidden, num_heads, num_layers)
self.ln_final = nn.LayerNorm(dim_hidden)
def __call__(self, x):
x = self.transformer(x) # (B, 256, 1024)
x = self.ln_final(x)
return x
class StylerDALLEModel(nn.Module):
def __init__(self, input_dim, hidden_dim: int = 512, num_heads: int = 8,
num_layers: int = 8, res_length: int = 1):
super(StylerDALLEModel, self).__init__()
self.hidden_size = hidden_dim
self.linear_proj = nn.Linear(input_dim, self.hidden_size)
self.num_heads = num_heads
self.res_len = res_length
self.nat_enc = TransformerAddPos(self.hidden_size, num_heads, 4)
self.nat_dec = NATransformerPos(hidden_dim, num_heads, num_layers, res_length, dim_ref=hidden_dim)
self.outNet = nn.Linear(self.hidden_size, 8192)
self.logSoftmax = nn.LogSoftmax(dim=1)
def __call__(self, input_encodings):
bs = input_encodings.size(0)
scale = 2
input_encodings = F.relu(self.linear_proj(input_encodings))
y = self.nat_enc(input_encodings)
input_encodings = input_encodings.view(bs, 16, 16, self.hidden_size)
x_ = torch.repeat_interleave(input_encodings, scale, dim=1).view(bs, -1, self.hidden_size)
x_ = torch.repeat_interleave(x_.view(bs, 16, 16*scale, self.hidden_size), scale, dim=1).view(bs, -1, self.hidden_size)
outputs = F.dropout(self.nat_dec(x_, y)).view(bs, -1, self.hidden_size)
output_size = outputs.size()
flat_outputs = outputs.contiguous().view(-1, output_size[2])
flat_scores = self.outNet(flat_outputs)
flat_log_probs = self.logSoftmax(flat_scores)
log_probs = flat_log_probs.contiguous().view(output_size[0], output_size[1], -1)
return log_probs