Skip to content

Latest commit

 

History

History
223 lines (165 loc) · 7.41 KB

README.md

File metadata and controls

223 lines (165 loc) · 7.41 KB

Install Ray and Tensorflow 2.8 (GPU) in Macbook M1

1. Reference:

And try TensorFlow probility, if possible

TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU).

2. STEP_1 homebrew

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

install necessary brew

brew install node
brew install npm
brew install libjpeg

3. STEP_2 xcode

xcode-select --install

4. STEP_3 instal conda M1(ARM)

Ray install Official

wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
bash Miniforge3-MacOSX-arm64.sh
# Cleanup.
rm https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh

5. STEP_4 CREATE conda enviroment, INSTALL tensorflow from Apple Channel

注:tensorflow-deps 的版本是基于 TensorFlow 的,因此可以根据自己的需求指定版本安装:

conda create --name tf28 python=3.9.5
conda activate tf28
conda install -c apple tensorflow-deps==2.8.0 -y
conda install matplotlib jupyterlab -y

Here is image how TensorFlow Macos install tf macos

Let's Skip install pip here , using pip-tools

# just for refernce
pip install tensorflow-macos (compbine to pip-compile)
pip install tensorflow-metal (compbine to pip-compile)

6. STEP_6 generate via pip-compile

Install pip-tools first

pip install pip-tools

Install Ray as you normally would. using requirement.txt

pip-compile --> compile.sh

pip-compile \
    --allow-unsafe \
    --generate-hashes \
    requirements.in \
    --output-file=requirements.txt

Check file for pip-compile : requirements.in

tensorflow-macos
tensorflow-metal
tensorboard
ray[default,data,rllib,tune,serve]
### see real requrements.in for detail

jupter notebooks seems necessary for VS Code's jupter works install on conda seems not works.

7. STEP 7 install requirements.txt generate from last step

Install generated via pip-sync

pip-sync requirements.txt

8. STEP 8 step special for grpcio hack

pip uninstall grpcio; conda install grpcio --force-reinstall

If there is any problem , just purge pip via

pip cache purge

Clean unuse data avoid effect later

conda env remove -n <NAME>
pip cache purge
conda clean -all

Test

Verify tool version and Tensorflow

(tf28) ziyu4huang@Ziyu-MBA-M1 study_ml % python
Python 3.9.5 | packaged by conda-forge | (default, Jun 19 2021, 00:24:55) 
[Clang 11.1.0 ] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> print(tf.__version__)
2.8.0
>>> tf.config.list_physical_devices()
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Tensorflow, takes a little longer (about 10 mins)

> python try_tensorflow.py

(tf28) ziyu4huang@Ziyu-MBA-M1 study_ml % python try_tensorflow.py 
Metal device set to: Apple M1

systemMemory: 8.00 GB
maxCacheSize: 2.67 GB

2022-04-24 18:09:37.678779: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.
2022-04-24 18:09:37.679902: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)
2022-04-24 18:09:38.166989: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz

Epoch 1/10
2022-04-24 18:09:38.350431: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
1872/1875 [============================>.] - ETA: 0s - loss: 0.4934 - accuracy: 0.82452022-04-24 18:09:53.286105: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.


Try Tensorflow Probility (Optional)

(tf28) ziyu4huang@Ziyu-MBA-M1 study_ml % python try_tf_probability.py 
Metal device set to: Apple M1

systemMemory: 8.00 GB
maxCacheSize: 2.67 GB

2022-04-24 18:57:08.498511: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.
2022-04-24 18:57:08.498619: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)
results (<tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.6406208], dtype=float32)>, <tf.Tensor: shape=(100000,), dtype=float32, numpy=
array([ 0.94913507, -0.06321114,  0.76776785, ...,  0.4874738 ,
        0.39296442, -0.21156944], dtype=float32)>, <tf.Tensor: shape=(), dtype=bool, numpy=True>, <tf.Tensor: shape=(), dtype=int32, numpy=5>)
(tf28) ziyu4huang@Ziyu-MBA-M1 study_ml % 


Setting Github

Github push using SSL

Test Git SSL mode

ssh -T git@github.com

setting to Git SSL mode

git remote set-url origin git@github.com:ziyu4huang/study_ml.git

local .git setting push using SSL Key

[core]
	repositoryformatversion = 0
	filemode = true
	bare = false
	logallrefupdates = true
	ignorecase = true
	precomposeunicode = true
[remote "origin"]
	url = git@github.com:ziyu4huang/study_ml.git
	fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
	remote = origin
	merge = refs/heads/main
[credential]
	helper = store
[user]
	name = ziyu4huang
	email = ziyu4huang@gmail.com