forked from Vastlab/Elephant-of-object-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·200 lines (171 loc) · 7.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import logging
import os
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel
import matplotlib.patches as mpatches
import matplotlib.lines as mlines
from matplotlib import pyplot as plt
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import default_argument_parser, default_setup, launch
from eval import BasicEvalOperations
import WIC
from detectron2.evaluation import inference_on_dataset
from detectron2.data.datasets import register_coco_instances
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import (
CommonMetricPrinter,
EventStorage,
JSONWriter,
TensorboardXWriter,
)
logger = logging.getLogger("detectron2")
colors=['b','g','r','c','m']
def plot_WIC(WIC_values, recalls_to_process, wilderness, line_style='--', label='Faster RCNN'):
for i,recall_thresh in enumerate(recalls_to_process):
plt.plot(wilderness,WIC_values[:,i],colors[i]+line_style,label=f"{round(recall_thresh, 1)} {label}")
plt.ylabel('Wilderness Impact',fontsize=15)
plt.xlabel('Wilderness Ratio',fontsize=15)
plt.xticks(torch.arange(0,max(wilderness)+0.5,0.5).tolist(),
[str(_) for _ in torch.arange(0,max(wilderness)+0.5,0.5).tolist()],
fontsize=10)
plt.savefig(f'{label}.pdf', bbox_inches='tight')
plt.show()
def do_test(cfg, model):
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
data_loader = build_detection_test_loader(cfg, dataset_name)
evaluator = BasicEvalOperations(dataset_name, cfg, True, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name))
results[dataset_name] = inference_on_dataset(model, data_loader, evaluator)
if comm.is_main_process():
logger.info(f"Image level evaluation complete for {dataset_name}")
logger.info(f"Results for {dataset_name}")
WIC.only_mAP_analysis(results[dataset_name]['predictions']['correct'],
results[dataset_name]['predictions']['scores'],
results[dataset_name]['predictions']['pred_classes'],
results[dataset_name]['category_counts'],
evaluator._coco_api.cats)
if comm.is_main_process():
logger.info(f"Combined results for datasets {', '.join(cfg.DATASETS.TEST)}")
eval_info={}
eval_info['category_counts'] = results[list(results.keys())[0]]['category_counts']
eval_info['predictions']={}
for dataset_name in results:
for k in results[dataset_name]['predictions'].keys():
if k not in eval_info['predictions']:
eval_info['predictions'][k]=[]
eval_info['predictions'][k].extend(results[dataset_name]['predictions'][k])
WIC.only_mAP_analysis(eval_info['predictions']['correct'],
eval_info['predictions']['scores'],
eval_info['predictions']['pred_classes'],
eval_info['category_counts'])
Recalls_to_process = (0.1, 0.3, 0.5)
wilderness = torch.arange(0, 5, 0.1).tolist()
WIC_values,wilderness_processed = WIC.WIC_analysis(eval_info,Recalls_to_process=Recalls_to_process,
wilderness=wilderness)
plot_WIC(WIC_values, Recalls_to_process, wilderness_processed, line_style='--', label='WIC')
return
def do_train(cfg, model, resume=False):
model.train()
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = (
checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
)
max_iter = cfg.SOLVER.MAX_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
data_loader = build_detection_train_loader(cfg)
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
iteration = iteration + 1
storage.step()
loss_dict = model(data)
losses = sum(loss_dict.values())
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
if comm.is_main_process():
storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
scheduler.step()
if (
cfg.TEST.EVAL_PERIOD > 0
and iteration % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter
):
do_test(cfg, model)
comm.synchronize()
if iteration - start_iter > 5 and (iteration % 20 == 0 or iteration == max_iter):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
def setup(args):
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(
cfg, args
)
for protocol_name in ('custom_voc_2007_train', 'custom_voc_2007_val', 'custom_voc_2012_train', 'custom_voc_2012_val', 'custom_voc_2007_test'):
register_coco_instances(protocol_name,
{},
f"protocol/custom_protocols/{protocol_name}.json",
f"datasets/VOC{protocol_name.split('_')[-2]}/JPEGImages/")
register_coco_instances("Mixed_Unknowns", {}, "protocol/custom_protocols/Mixed_Unknowns.json", "datasets/coco/train2017")
register_coco_instances("WR1_Mixed_Unknowns", {}, "protocol/custom_protocols/WR1_Mixed_Unknowns.json", "datasets/coco/train2017")
register_coco_instances("debug", {}, "protocol/debug.json", "datasets/coco/train2017")
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
)
do_train(cfg, model, resume=args.resume)
return do_test(cfg, model)
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)