-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter11.tex
762 lines (666 loc) · 22.9 KB
/
chapter11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
\chapter{Conceptos básicos de grafos}
Muchos problemas de programación pueden resolverse modelando el problema como un problema de grafo y utilizando un algoritmo de grafo apropiado.
Un ejemplo típico de un grafo es una red de carreteras y ciudades en un país.
A veces, sin embargo, el grafo está oculto en el problema y puede ser difícil detectarlo.
Esta parte del libro discute los algoritmos de grafos,
especialmente centrándose en temas que
son importantes en la programación competitiva.
En este capítulo, revisaremos conceptos
relacionados con los grafos,
y estudiaremos diferentes formas de representar grafos en algoritmos.
\section{Terminología de grafos}
\index{graph}
\index{node}
\index{edge}
Un \key{grafo} consiste en \key{nodos}
y \key{aristas}. En este libro,
la variable $n$ denota el número de nodos
en un grafo, y la variable $m$ denota
el número de aristas.
Los nodos están numerados
utilizando enteros $1,2,\ldots,n$.
Por ejemplo, el siguiente grafo consta de 5 nodos y 7 aristas:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (4) -- (5);
\end{tikzpicture}
\end{center}
\index{path}
Un \key{camino} va del nodo $a$ al nodo $b$
a través de aristas del grafo.
La \key{longitud} de un camino es el número de
aristas en él.
Por ejemplo, el grafo anterior contiene
un camino $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$
de longitud 3
desde el nodo 1 hasta el nodo 5:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (4) -- (5);
\path[draw=red,thick,->,line width=2pt] (1) -- (3);
\path[draw=red,thick,->,line width=2pt] (3) -- (4);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\end{tikzpicture}
\end{center}
\index{cycle}
Un camino es un \key{ciclo} si el primer y último
nodo es el mismo.
Por ejemplo, el grafo anterior contiene
un ciclo $1 \rightarrow 3 \rightarrow 4 \rightarrow 1$.
Un camino es \key{simple} si cada nodo aparece
como máximo una vez en el camino.
%
% \begin{itemize}
% \item $1 \rightarrow 2 \rightarrow 5$ (length 2)
% \item $1 \rightarrow 4 \rightarrow 5$ (length 2)
% \item $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$ (length 3)
% \item $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ (length 3)
% \item $1 \rightarrow 4 \rightarrow 2 \rightarrow 5$ (length 3)
% \item $1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 5$ (length 4)
% \end{itemize}
\subsubsection{Conectividad}
\index{connected graph}
Un grafo es \key{conectado} si hay un camino
entre dos nodos cualesquiera.
Por ejemplo, el siguiente grafo está conectado:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (2) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\end{tikzpicture}
\end{center}
El siguiente grafo no está conectado,
porque no es posible llegar
desde el nodo 4 a ningún otro nodo:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (2) -- (3);
\end{tikzpicture}
\end{center}
\index{component}
Las partes conectadas de un grafo son
llamadas sus \key{componentes}.
Por ejemplo, el siguiente grafo
contiene tres componentes:
$\{1,\,2,\,3\}$,
$\{4,\,5,\,6,\,7\}$ y
$\{8\}$.
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (6) at (6,1) {$6$};
\node[draw, circle] (7) at (9,1) {$7$};
\node[draw, circle] (4) at (6,3) {$4$};
\node[draw, circle] (5) at (9,3) {$5$};
\node[draw, circle] (8) at (11,2) {$8$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (2) -- (3);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (4) -- (5);
\path[draw,thick,-] (5) -- (7);
\path[draw,thick,-] (6) -- (7);
\path[draw,thick,-] (6) -- (4);
\end{tikzpicture}
\end{center}
\index{tree}
Un \key{árbol} es un gráfico conectado
que consta de $n$ nodos y $n-1$ aristas.
Existe una ruta única
entre dos nodos cualesquiera de un árbol.
Por ejemplo, el siguiente gráfico es un árbol:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
%\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (2) -- (5);
\path[draw,thick,-] (2) -- (4);
%\path[draw,thick,-] (4) -- (5);
\end{tikzpicture}
\end{center}
\subsubsection{Direcciones de las aristas}
\index{gráfico dirigido}
Un gráfico es \key{dirigido}
si las aristas se pueden recorrer
en una sola dirección.
Por ejemplo, el siguiente gráfico está dirigido:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (2) -- (5);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (3) -- (1);
\end{tikzpicture}
\end{center}
El gráfico anterior contiene
una ruta $3 \rightarrow 1 \rightarrow 2 \rightarrow 5$
desde el nodo $3$ hasta el nodo $5$,
pero no hay una ruta desde el nodo $5$ hasta el nodo $3$.
\subsubsection{Pesos de las aristas}
\index{gráfico ponderado}
En un gráfico \key{ponderado}, cada arista se asigna
un \key{peso}.
Los pesos a menudo se interpretan como longitudes de las aristas.
Por ejemplo, el siguiente gráfico está ponderado:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:1] {} (3);
\path[draw,thick,-] (3) -- node[font=\small,label=below:7] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:7] {} (5);
\path[draw,thick,-] (4) -- node[font=\small,label=below:3] {} (5);
\end{tikzpicture}
\end{center}
La longitud de una ruta en un gráfico ponderado
es la suma de los pesos de las aristas en la ruta.
Por ejemplo, en el gráfico anterior,
la longitud de la ruta
$1 \rightarrow 2 \rightarrow 5$ es $12$,
y la longitud de la ruta
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ es $11$.
La última ruta es la ruta \key{más corta} desde el nodo $1$ hasta el nodo $5$.
\subsubsection{Vecinos y grados}
\index{vecino}
\index{grado}
Dos nodos son \key{vecinos} o \key{adyacentes}
si hay una arista entre ellos.
El \key{grado} de un nodo
es el número de sus vecinos.
Por ejemplo, en el siguiente gráfico,
los vecinos del nodo 2 son 1, 4 y 5,
por lo que su grado es 3.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (1) -- (4);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (2) -- (5);
%\path[draw,thick,-] (4) -- (5);
\end{tikzpicture}
\end{center}
La suma de grados en un gráfico es siempre $2m$,
donde $m$ es el número de aristas,
porque cada arista
aumenta el grado de exactamente dos nodos en uno.
Por esta razón, la suma de grados es siempre par.
\index{gráfico regular}
\index{gráfico completo}
Un gráfico es \key{regular} si el
grado de cada nodo es una constante $d$.
Un gráfico es \key{completo} si el
grado de cada nodo es $n-1$, es decir,
el gráfico contiene todas las aristas posibles
entre los nodos.
\index{grado de entrada}
\index{grado de salida}
En un gráfico dirigido, el \key{grado de entrada}
de un nodo es el número de aristas
que terminan en el nodo,
y el \key{grado de salida} de un nodo
es el número de aristas que comienzan en el nodo.
Por ejemplo, en el siguiente gráfico,
el grado de entrada del nodo 2 es 2,
y el grado de salida del nodo 2 es 1.
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (4,3) {$2$};
\node[draw, circle] (3) at (1,1) {$3$};
\node[draw, circle] (4) at (4,1) {$4$};
\node[draw, circle] (5) at (6,2) {$5$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (1) -- (3);
\path[draw,thick,->,>=latex] (1) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,<-,>=latex] (2) -- (5);
\end{tikzpicture}
\end{center}
\subsubsection{Coloraciones}
\index{coloración}
\index{gráfico bipartito}
En una \key{coloración} de un grafo,
cada nodo se asigna un color de modo que
ningún nodo adyacente tenga el mismo color.
Un grafo es \key{bipartito} si
es posible colorearlo utilizando dos colores.
Resulta que un grafo es bipartito
exactamente cuando no contiene un ciclo
con un número impar de aristas.
Por ejemplo, el grafo
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\end{tikzpicture}
\end{center}
es bipartito, porque puede colorearse de la siguiente manera:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle, fill=blue!40] (1) at (1,3) {$2$};
\node[draw, circle, fill=red!40] (2) at (4,3) {$3$};
\node[draw, circle, fill=red!40] (3) at (1,1) {$5$};
\node[draw, circle, fill=blue!40] (4) at (4,1) {$6$};
\node[draw, circle, fill=red!40] (5) at (-2,1) {$4$};
\node[draw, circle, fill=blue!40] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\end{tikzpicture}
\end{center}
Sin embargo, el grafo
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\path[draw,thick,-] (1) -- (6);
\end{tikzpicture}
\end{center}
no es bipartito, porque no es posible colorear
el siguiente ciclo de tres nodos usando dos colores:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\path[draw,thick,-] (1) -- (6);
\path[draw=red,thick,-,line width=2pt] (1) -- (3);
\path[draw=red,thick,-,line width=2pt] (3) -- (6);
\path[draw=red,thick,-,line width=2pt] (6) -- (1);
\end{tikzpicture}
\end{center}
\subsubsection{Simplicidad}
\index{grafo simple}
Un grafo es \key{simple}
si ninguna arista comienza y termina en el mismo nodo,
y no hay múltiples
aristas entre dos nodos.
A menudo asumimos que los grafos son simples.
Por ejemplo, el siguiente grafo \emph{no} es simple:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$2$};
\node[draw, circle] (2) at (4,3) {$3$};
\node[draw, circle] (3) at (1,1) {$5$};
\node[draw, circle] (4) at (4,1) {$6$};
\node[draw, circle] (5) at (-2,1) {$4$};
\node[draw, circle] (6) at (-2,3) {$1$};
\path[draw,thick,-] (1) edge [bend right=20] (2);
\path[draw,thick,-] (2) edge [bend right=20] (1);
%\path[draw,thick,-] (1) -- (2);
\path[draw,thick,-] (1) -- (3);
\path[draw,thick,-] (3) -- (4);
\path[draw,thick,-] (2) -- (4);
\path[draw,thick,-] (3) -- (6);
\path[draw,thick,-] (5) -- (6);
\tikzset{every loop/.style={in=135,out=190}}
\path[draw,thick,-] (5) edge [loop left] (5);
\end{tikzpicture}
\end{center}
\section{Representación de grafos}
Hay varias formas de representar grafos
en algoritmos.
La elección de una estructura de datos
depende del tamaño del grafo y
de la forma en que el algoritmo lo procesa.
A continuación, veremos tres representaciones comunes.
\subsubsection{Representación de lista de adyacencia}
\index{lista de adyacencia}
En la representación de lista de adyacencia,
cada nodo $x$ en el grafo se asigna una \key{lista de adyacencia}
que consiste en los nodos
a los que hay una arista desde $x$.
Las listas de adyacencia son las más populares
formas de representar grafos, y la mayoría de los algoritmos se pueden
implementar de manera eficiente utilizando ellos.
Una forma conveniente de almacenar las listas de adyacencia es declarar
una matriz de vectores de la siguiente manera:
\begin{lstlisting}
vector<int> adj[N];
\end{lstlisting}
La constante $N$ se elige de modo que todas
las listas de adyacencia se puedan almacenar.
Por ejemplo, el grafo
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (4) -- (1);
\end{tikzpicture}
\end{center}
se puede almacenar de la siguiente manera:
\begin{lstlisting}
adj[1].push_back(2);
adj[2].push_back(3);
adj[2].push_back(4);
adj[3].push_back(4);
adj[4].push_back(1);
\end{lstlisting}
Si el gráfico no está dirigido, se puede almacenar de manera similar,
pero cada borde se agrega en ambas direcciones.
Para un gráfico ponderado, la estructura se puede ampliar
de la siguiente manera:
\begin{lstlisting}
vector<pair<int,int>> adj[N];
\end{lstlisting}
En este caso, la lista de adyacencia del nodo $a$
contiene el par $(b,w)$
siempre que haya un borde del nodo $a$ al nodo $b$
con peso $w$. Por ejemplo, el gráfico
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
\end{tikzpicture}
\end{center}
se puede almacenar de la siguiente manera:
\begin{lstlisting}
adj[1].push_back({2,5});
adj[2].push_back({3,7});
adj[2].push_back({4,6});
adj[3].push_back({4,5});
adj[4].push_back({1,2});
\end{lstlisting}
La ventaja de usar listas de adyacencia es que
podemos encontrar de manera eficiente los nodos a los que
podemos movernos desde un nodo dado a través de un borde.
Por ejemplo, el siguiente bucle recorre todos los nodos
a los que podemos movernos desde el nodo $s$:
\begin{lstlisting}
for (auto u : adj[s]) {
// procesar nodo u
}
\end{lstlisting}
\subsubsection{Representación de matriz de adyacencia}
\index{matriz de adyacencia}
Una \key{matriz de adyacencia} es una matriz bidimensional
que indica qué bordes contiene el gráfico.
Podemos verificar de manera eficiente desde una matriz de adyacencia
si hay un borde entre dos nodos.
La matriz se puede almacenar como una matriz
\begin{lstlisting}
int adj[N][N];
\end{lstlisting}
donde cada valor $\texttt{adj}[a][b]$ indica
si el gráfico contiene un borde de
nodo $a$ a nodo $b$.
Si el borde está incluido en el gráfico,
entonces $\texttt{adj}[a][b]=1$,
y de lo contrario $\texttt{adj}[a][b]=0$.
Por ejemplo, el gráfico
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (4) -- (1);
\end{tikzpicture}
\end{center}
se puede representar de la siguiente manera:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,4);
\node at (0.5,0.5) {1};
\node at (1.5,0.5) {0};
\node at (2.5,0.5) {0};
\node at (3.5,0.5) {0};
\node at (0.5,1.5) {0};
\node at (1.5,1.5) {0};
\node at (2.5,1.5) {0};
\node at (3.5,1.5) {1};
\node at (0.5,2.5) {0};
\node at (1.5,2.5) {0};
\node at (2.5,2.5) {1};
\node at (3.5,2.5) {1};
\node at (0.5,3.5) {0};
\node at (1.5,3.5) {1};
\node at (2.5,3.5) {0};
\node at (3.5,3.5) {0};
\node at (-0.5,0.5) {4};
\node at (-0.5,1.5) {3};
\node at (-0.5,2.5) {2};
\node at (-0.5,3.5) {1};
\node at (0.5,4.5) {1};
\node at (1.5,4.5) {2};
\node at (2.5,4.5) {3};
\node at (3.5,4.5) {4};
\end{tikzpicture}
\end{center}
Si el gráfico está ponderado, la representación de la matriz de adyacencia
se puede ampliar para que
la matriz contenga el peso del borde
si el borde existe.
Usando esta representación, el gráfico
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
\end{tikzpicture}
\end{center}
\begin{samepage}
corresponde a la siguiente matriz:
\begin{center}
\begin{tikzpicture}[scale=0.7]
\draw (0,0) grid (4,4);
\node at (0.5,0.5) {2};
\node at (1.5,0.5) {0};
\node at (2.5,0.5) {0};
\node at (3.5,0.5) {0};
\node at (0.5,1.5) {0};
\node at (1.5,1.5) {0};
\node at (2.5,1.5) {0};
\node at (3.5,1.5) {5};
\node at (0.5,2.5) {0};
\node at (1.5,2.5) {0};
\node at (2.5,2.5) {7};
\node at (3.5,2.5) {6};
\node at (0.5,3.5) {0};
\node at (1.5,3.5) {5};
\node at (2.5,3.5) {0};
\node at (3.5,3.5) {0};
\node at (-0.5,0.5) {4};
\node at (-0.5,1.5) {3};
\node at (-0.5,2.5) {2};
\node at (-0.5,3.5) {1};
\node at (0.5,4.5) {1};
\node at (1.5,4.5) {2};
\node at (2.5,4.5) {3};
\node at (3.5,4.5) {4};
\end{tikzpicture}
\end{center}
\end{samepage}
El inconveniente de la representación de la matriz de adyacencia
es que la matriz contiene $n^2$ elementos,
y por lo general la mayoría de ellos son cero.
Por esta razón, la representación no se puede utilizar
si el gráfico es grande.
\subsubsection{Representación de la lista de aristas}
\index{lista de aristas}
Una \key{lista de aristas} contiene todas las aristas de un gráfico
en algún orden.
Esta es una forma conveniente de representar un gráfico
si el algoritmo procesa todas las aristas del gráfico
y no es necesario encontrar aristas que comiencen
en un nodo dado.
La lista de aristas se puede almacenar en un vector
\begin{lstlisting}
vector<pair<int,int>> edges;
\end{lstlisting}
donde cada par $(a,b)$ denota que
hay una arista del nodo $a$ al nodo $b$.
Por lo tanto, el gráfico
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (2) -- (4);
\path[draw,thick,->,>=latex] (3) -- (4);
\path[draw,thick,->,>=latex] (4) -- (1);
\end{tikzpicture}
\end{center}
se puede representar de la siguiente manera:
\begin{lstlisting}
edges.push_back({1,2});
edges.push_back({2,3});
edges.push_back({2,4});
edges.push_back({3,4});
edges.push_back({4,1});
\end{lstlisting}
\noindent
Si el gráfico está ponderado, la estructura puede
extenderse de la siguiente manera:
\begin{lstlisting}
vector<tuple<int,int,int>> edges;
\end{lstlisting}
Cada elemento de esta lista es de la
forma $(a,b,w)$, lo que significa que hay
una arista del nodo $a$ al nodo $b$ con peso $w$.
Por ejemplo, el gráfico
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,3) {$1$};
\node[draw, circle] (2) at (3,3) {$2$};
\node[draw, circle] (3) at (5,3) {$3$};
\node[draw, circle] (4) at (3,1) {$4$};
\path[draw,thick,->,>=latex] (1) -- node[font=\small,label=above:5] {} (2);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=above:7] {} (3);
\path[draw,thick,->,>=latex] (2) -- node[font=\small,label=left:6] {} (4);
\path[draw,thick,->,>=latex] (3) -- node[font=\small,label=right:5] {} (4);
\path[draw,thick,->,>=latex] (4) -- node[font=\small,label=left:2] {} (1);
\end{tikzpicture}
\end{center}
\begin{samepage}
se puede representar de la siguiente manera\footnote{En algunos compiladores antiguos, la función
\texttt{make\_tuple} debe utilizarse en lugar de las llaves (por ejemplo,
\texttt{make\_tuple(1,2,5)} en lugar de \texttt{\{1,2,5\}}).}:
\begin{lstlisting}
edges.push_back({1,2,5});
edges.push_back({2,3,7});
edges.push_back({2,4,6});
edges.push_back({3,4,5});
edges.push_back({4,1,2});
\end{lstlisting}
\end{samepage}