-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter16.tex
705 lines (615 loc) · 24.4 KB
/
chapter16.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
\chapter{Grafos dirigidos}
En este capítulo, nos centramos en dos clases de grafos dirigidos:
\begin{itemize}
\item \key{Grafos acíclicos}:
No hay ciclos en el grafo,
por lo que no hay camino desde ningún nodo hasta sí mismo\footnote{Los grafos acíclicos dirigidos a veces se denominan DAGs.}.
\item \key{Grafos sucesores}:
El grado de salida de cada nodo es 1,
por lo que cada nodo tiene un sucesor único.
\end{itemize}
Resulta que en ambos casos,
podemos diseñar algoritmos eficientes que se basan
en las propiedades especiales de los grafos.
\section{Ordenación topológica}
\index{ordenación topológica}
\index{ciclo}
Una \key{ordenación topológica} es una ordenación
de los nodos de un grafo dirigido
tal que si hay un camino desde el nodo $a$ hasta el nodo $b$,
entonces el nodo $a$ aparece antes que el nodo $b$ en la ordenación.
Por ejemplo, para el grafo
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,5) {$1$};
\node[draw, circle] (2) at (3,5) {$2$};
\node[draw, circle] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle] (5) at (3,3) {$5$};
\node[draw, circle] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) -- (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
una ordenación topológica es
$[4,1,5,2,3,6]$:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (-6,0) {$1$};
\node[draw, circle] (2) at (-3,0) {$2$};
\node[draw, circle] (3) at (-1.5,0) {$3$};
\node[draw, circle] (4) at (-7.5,0) {$4$};
\node[draw, circle] (5) at (-4.5,0) {$5$};
\node[draw, circle] (6) at (-0,0) {$6$};
\path[draw,thick,->,>=latex] (1) edge [bend right=30] (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (4) edge [bend left=30] (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) edge [bend left=30] (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
Un grafo acíclico siempre tiene una ordenación topológica.
Sin embargo, si el grafo contiene un ciclo,
no es posible formar una ordenación topológica,
porque ningún nodo del ciclo puede aparecer
antes que los demás nodos del ciclo en la ordenación.
Resulta que la búsqueda en profundidad se puede utilizar
para comprobar si un grafo dirigido contiene un ciclo
y, si no contiene un ciclo, para construir una ordenación topológica.
\subsubsection{Algoritmo}
La idea es recorrer los nodos del grafo
y siempre comenzar una búsqueda en profundidad en el nodo actual
si aún no se ha procesado.
Durante las búsquedas, los nodos tienen tres estados posibles:
\begin{itemize}
\item estado 0: el nodo no se ha procesado (blanco)
\item estado 1: el nodo está en proceso (gris claro)
\item estado 2: el nodo se ha procesado (gris oscuro)
\end{itemize}
Inicialmente, el estado de cada nodo es 0.
Cuando una búsqueda llega a un nodo por primera vez,
su estado pasa a ser 1.
Finalmente, después de que todos los sucesores del nodo hayan
sido procesados, su estado pasa a ser 2.
Si el grafo contiene un ciclo, nos daremos cuenta de esto
durante la búsqueda, porque tarde o temprano
llegaremos a un nodo cuyo estado es 1.
En este caso, no es posible construir una ordenación topológica.
Si el grafo no contiene un ciclo, podemos construir
una ordenación topológica agregando cada nodo a una lista cuando el estado del nodo pasa a ser 2.
Esta lista en orden inverso es una ordenación topológica.
\subsubsection{Ejemplo 1}
En el grafo de ejemplo, la búsqueda primero avanza
desde el nodo 1 hasta el nodo 6:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle,fill=gray!20] (1) at (1,5) {$1$};
\node[draw, circle,fill=gray!20] (2) at (3,5) {$2$};
\node[draw, circle,fill=gray!20] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle] (5) at (3,3) {$5$};
\node[draw, circle,fill=gray!80] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) -- (3);
%\path[draw,thick,->,>=latex] (3) -- (6);
\path[draw=red,thick,->,line width=2pt] (1) -- (2);
\path[draw=red,thick,->,line width=2pt] (2) -- (3);
\path[draw=red,thick,->,line width=2pt] (3) -- (6);
\end{tikzpicture}
\end{center}
Ahora el nodo 6 se ha procesado, por lo que se agrega a la lista.
Después de esto, también los nodos 3, 2 y 1 se agregan a la lista:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle,fill=gray!80] (1) at (1,5) {$1$};
\node[draw, circle,fill=gray!80] (2) at (3,5) {$2$};
\node[draw, circle,fill=gray!80] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle] (5) at (3,3) {$5$};
\node[draw, circle,fill=gray!80] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) -- (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
En este punto, la lista es $[6,3,2,1]$.
La próxima búsqueda comienza en el nodo 4:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle,fill=gray!80] (1) at (1,5) {$1$};
\node[draw, circle,fill=gray!80] (2) at (3,5) {$2$};
\node[draw, circle,fill=gray!80] (3) at (5,5) {$3$};
\node[draw, circle,fill=gray!20] (4) at (1,3) {$4$};
\node[draw, circle,fill=gray!80] (5) at (3,3) {$5$};
\node[draw, circle,fill=gray!80] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (4) -- (1);
%\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) -- (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\path[draw=red,thick,->,line width=2pt] (4) -- (5);
\end{tikzpicture}
\end{center}
Por lo tanto, la lista final es $[6,3,2,1,5,4]$.
Hemos procesado todos los nodos, por lo que se ha encontrado
una ordenación topológica.
La ordenación topológica es la lista inversa
$[4,5,1,2,3,6]$:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (3,0) {$1$};
\node[draw, circle] (2) at (4.5,0) {$2$};
\node[draw, circle] (3) at (6,0) {$3$};
\node[draw, circle] (4) at (0,0) {$4$};
\node[draw, circle] (5) at (1.5,0) {$5$};
\node[draw, circle] (6) at (7.5,0) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (4) edge [bend left=30] (1);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) edge [bend right=30] (2);
\path[draw,thick,->,>=latex] (5) edge [bend right=40] (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
Tenga en cuenta que una ordenación topológica no es única,
y puede haber varias ordenaciones topológicas para un gráfico.
\subsubsection{Ejemplo 2}
Consideremos ahora un gráfico para el cual no podemos
construir una ordenación topológica,
porque el gráfico contiene un ciclo:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,5) {$1$};
\node[draw, circle] (2) at (3,5) {$2$};
\node[draw, circle] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle] (5) at (3,3) {$5$};
\node[draw, circle] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (3) -- (5);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
La búsqueda procede de la siguiente manera:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle,fill=gray!20] (1) at (1,5) {$1$};
\node[draw, circle,fill=gray!20] (2) at (3,5) {$2$};
\node[draw, circle,fill=gray!20] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle,fill=gray!20] (5) at (3,3) {$5$};
\node[draw, circle] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (4) -- (1);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (3) -- (6);
\path[draw=red,thick,->,line width=2pt] (1) -- (2);
\path[draw=red,thick,->,line width=2pt] (2) -- (3);
\path[draw=red,thick,->,line width=2pt] (3) -- (5);
\path[draw=red,thick,->,line width=2pt] (5) -- (2);
\end{tikzpicture}
\end{center}
La búsqueda llega al nodo 2 cuyo estado es 1,
lo que significa que el gráfico contiene un ciclo.
En este ejemplo, hay un ciclo
$2 \rightarrow 3 \rightarrow 5 \rightarrow 2$.
\section{Programación dinámica}
Si un gráfico dirigido es acíclico,
la programación dinámica se puede aplicar a él.
Por ejemplo, podemos resolver eficientemente los siguientes
problemas relacionados con las rutas desde un nodo de inicio
hasta un nodo final:
\begin{itemize}
\item ¿Cuántas rutas diferentes hay?
\item ¿Cuál es la ruta más corta/más larga?
\item ¿Cuál es el número mínimo/máximo de aristas en una ruta?
\item ¿Qué nodos aparecen ciertamente en cualquier ruta?
\end{itemize}
\subsubsection{Contando el número de rutas}
Como ejemplo, calculemos el número de rutas
desde el nodo 1 al nodo 6 en el siguiente gráfico:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,5) {$1$};
\node[draw, circle] (2) at (3,5) {$2$};
\node[draw, circle] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle] (5) at (3,3) {$5$};
\node[draw, circle] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (1) -- (4);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) -- (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
Hay un total de tres rutas de este tipo:
\begin{itemize}
\item $1 \rightarrow 2 \rightarrow 3 \rightarrow 6$
\item $1 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 6$
\item $1 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 6$
\end{itemize}
Sea $\texttt{paths}(x)$ el número de rutas desde
el nodo 1 al nodo $x$.
Como caso base, $\texttt{paths}(1)=1$.
Entonces, para calcular otros valores de $\texttt{paths}(x)$,
podemos usar la recursión
\[\texttt{paths}(x) = \texttt{paths}(a_1)+\texttt{paths}(a_2)+\cdots+\texttt{paths}(a_k)\]
donde $a_1,a_2,\ldots,a_k$ son los nodos desde los que hay
una arista a $x$.
Dado que el gráfico es acíclico, los valores de $\texttt{paths}(x)$
se pueden calcular en el orden de una clasificación topológica.
Una clasificación topológica para el gráfico anterior es la siguiente:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (4.5,0) {$2$};
\node[draw, circle] (3) at (6,0) {$3$};
\node[draw, circle] (4) at (1.5,0) {$4$};
\node[draw, circle] (5) at (3,0) {$5$};
\node[draw, circle] (6) at (7.5,0) {$6$};
\path[draw,thick,->,>=latex] (1) edge [bend left=30] (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (1) -- (4);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) edge [bend right=30] (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\end{tikzpicture}
\end{center}
Por lo tanto, los números de rutas son los siguientes:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (1,5) {$1$};
\node[draw, circle] (2) at (3,5) {$2$};
\node[draw, circle] (3) at (5,5) {$3$};
\node[draw, circle] (4) at (1,3) {$4$};
\node[draw, circle] (5) at (3,3) {$5$};
\node[draw, circle] (6) at (5,3) {$6$};
\path[draw,thick,->,>=latex] (1) -- (2);
\path[draw,thick,->,>=latex] (2) -- (3);
\path[draw,thick,->,>=latex] (1) -- (4);
\path[draw,thick,->,>=latex] (4) -- (5);
\path[draw,thick,->,>=latex] (5) -- (2);
\path[draw,thick,->,>=latex] (5) -- (3);
\path[draw,thick,->,>=latex] (3) -- (6);
\node[color=red] at (1,2.3) {$1$};
\node[color=red] at (3,2.3) {$1$};
\node[color=red] at (5,2.3) {$3$};
\node[color=red] at (1,5.7) {$1$};
\node[color=red] at (3,5.7) {$2$};
\node[color=red] at (5,5.7) {$3$};
\end{tikzpicture}
\end{center}
Por ejemplo, para calcular el valor de $\texttt{paths}(3)$,
podemos usar la fórmula $\texttt{paths}(2)+\texttt{paths}(5)$,
porque hay aristas desde los nodos 2 y 5
al nodo 3.
Dado que $\texttt{paths}(2)=2$ y $\texttt{paths}(5)=1$, concluimos que $\texttt{paths}(3)=3$.
\subsubsection{Extensión del algoritmo de Dijkstra}
\index{Algoritmo de Dijkstra}
Un subproducto del algoritmo de Dijkstra es un gráfico dirigido y acíclico
que indica para cada nodo del gráfico original
las formas posibles de alcanzar el nodo utilizando una ruta más corta
desde el nodo de inicio.
La programación dinámica se puede aplicar a ese gráfico.
Por ejemplo, en el gráfico
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (2,0) {$2$};
\node[draw, circle] (3) at (0,-2) {$3$};
\node[draw, circle] (4) at (2,-2) {$4$};
\node[draw, circle] (5) at (4,-1) {$5$};
\path[draw,thick,-] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,-] (1) -- node[font=\small,label=left:5] {} (3);
\path[draw,thick,-] (2) -- node[font=\small,label=right:4] {} (4);
\path[draw,thick,-] (2) -- node[font=\small,label=above:8] {} (5);
\path[draw,thick,-] (3) -- node[font=\small,label=below:2] {} (4);
\path[draw,thick,-] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw,thick,-] (2) -- node[font=\small,label=above:2] {} (3);
\end{tikzpicture}
\end{center}
las rutas más cortas desde el nodo 1 pueden usar las siguientes aristas:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (2,0) {$2$};
\node[draw, circle] (3) at (0,-2) {$3$};
\node[draw, circle] (4) at (2,-2) {$4$};
\node[draw, circle] (5) at (4,-1) {$5$};
\path[draw,thick,->] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,->] (1) -- node[font=\small,label=left:5] {} (3);
\path[draw,thick,->] (2) -- node[font=\small,label=right:4] {} (4);
\path[draw,thick,->] (3) -- node[font=\small,label=below:2] {} (4);
\path[draw,thick,->] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw,thick,->] (2) -- node[font=\small,label=above:2] {} (3);
\end{tikzpicture}
\end{center}
Ahora podemos, por ejemplo, calcular el número de
caminos más cortos desde el nodo 1 hasta el nodo 5
utilizando programación dinámica:
\begin{center}
\begin{tikzpicture}
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (2,0) {$2$};
\node[draw, circle] (3) at (0,-2) {$3$};
\node[draw, circle] (4) at (2,-2) {$4$};
\node[draw, circle] (5) at (4,-1) {$5$};
\path[draw,thick,->] (1) -- node[font=\small,label=above:3] {} (2);
\path[draw,thick,->] (1) -- node[font=\small,label=left:5] {} (3);
\path[draw,thick,->] (2) -- node[font=\small,label=right:4] {} (4);
\path[draw,thick,->] (3) -- node[font=\small,label=below:2] {} (4);
\path[draw,thick,->] (4) -- node[font=\small,label=below:1] {} (5);
\path[draw,thick,->] (2) -- node[font=\small,label=above:2] {} (3);
\node[color=red] at (0,0.7) {$1$};
\node[color=red] at (2,0.7) {$1$};
\node[color=red] at (0,-2.7) {$2$};
\node[color=red] at (2,-2.7) {$3$};
\node[color=red] at (4,-1.7) {$3$};
\end{tikzpicture}
\end{center}
\subsubsection{Representando problemas como grafos}
En realidad, cualquier problema de programación dinámica
puede representarse como un grafo dirigido y acíclico.
En tal grafo, cada nodo corresponde a un estado de programación dinámica
y las aristas indican cómo los estados dependen unos de otros.
Como ejemplo, considere el problema
de formar una suma de dinero $n$
utilizando monedas
$\{c_1,c_2,\ldots,c_k\}$.
En este problema, podemos construir un grafo donde
cada nodo corresponde a una suma de dinero,
y las aristas muestran cómo se pueden elegir las monedas.
Por ejemplo, para las monedas $\{1,3,4\}$ y $n=6$,
el grafo es el siguiente:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (0) at (0,0) {$0$};
\node[draw, circle] (1) at (2,0) {$1$};
\node[draw, circle] (2) at (4,0) {$2$};
\node[draw, circle] (3) at (6,0) {$3$};
\node[draw, circle] (4) at (8,0) {$4$};
\node[draw, circle] (5) at (10,0) {$5$};
\node[draw, circle] (6) at (12,0) {$6$};
\path[draw,thick,->] (0) -- (1);
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (2) -- (3);
\path[draw,thick,->] (3) -- (4);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (5) -- (6);
\path[draw,thick,->] (0) edge [bend right=30] (3);
\path[draw,thick,->] (1) edge [bend right=30] (4);
\path[draw,thick,->] (2) edge [bend right=30] (5);
\path[draw,thick,->] (3) edge [bend right=30] (6);
\path[draw,thick,->] (0) edge [bend left=30] (4);
\path[draw,thick,->] (1) edge [bend left=30] (5);
\path[draw,thick,->] (2) edge [bend left=30] (6);
\end{tikzpicture}
\end{center}
Usando esta representación,
el camino más corto desde el nodo 0 hasta el nodo $n$
corresponde a una solución con el número mínimo de monedas,
y el número total de caminos desde el nodo 0 hasta el nodo $n$
es igual al número total de soluciones.
\section{Caminos sucesores}
\index{grafo sucesor}
\index{grafo funcional}
Para el resto del capítulo,
nos centraremos en los \key{grafos sucesores}.
En esos grafos,
el grado de salida de cada nodo es 1, es decir,
exactamente una arista comienza en cada nodo.
Un grafo sucesor consiste en uno o más
componentes, cada uno de los cuales contiene
un ciclo y algunos caminos que conducen a él.
Los grafos sucesores a veces se llaman
\key{grafos funcionales}.
La razón de esto es que cualquier grafo sucesor
corresponde a una función que define
las aristas del grafo.
El parámetro de la función es un nodo del grafo,
y la función da el sucesor de ese nodo.
Por ejemplo, la función
\begin{center}
\begin{tabular}{r|rrrrrrrrr}
$x$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
$\texttt{succ}(x)$ & 3 & 5 & 7 & 6 & 2 & 2 & 1 & 6 & 3 \\
\end{tabular}
\end{center}
define el siguiente grafo:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {$1$};
\node[draw, circle] (2) at (2,0) {$2$};
\node[draw, circle] (3) at (-2,0) {$3$};
\node[draw, circle] (4) at (1,-3) {$4$};
\node[draw, circle] (5) at (4,0) {$5$};
\node[draw, circle] (6) at (2,-1.5) {$6$};
\node[draw, circle] (7) at (-2,-1.5) {$7$};
\node[draw, circle] (8) at (3,-3) {$8$};
\node[draw, circle] (9) at (-4,0) {$9$};
\path[draw,thick,->] (1) -- (3);
\path[draw,thick,->] (2) edge [bend left=40] (5);
\path[draw,thick,->] (3) -- (7);
\path[draw,thick,->] (4) -- (6);
\path[draw,thick,->] (5) edge [bend left=40] (2);
\path[draw,thick,->] (6) -- (2);
\path[draw,thick,->] (7) -- (1);
\path[draw,thick,->] (8) -- (6);
\path[draw,thick,->] (9) -- (3);
\end{tikzpicture}
\end{center}
Dado que cada nodo de un grafo sucesor tiene un
sucesor único, también podemos definir una función $\texttt{succ}(x,k)$
que da el nodo al que llegaremos si
comenzamos en el nodo $x$ y caminamos $k$ pasos hacia adelante.
Por ejemplo, en el grafo anterior $\texttt{succ}(4,6)=2$,
porque llegaremos al nodo 2 caminando 6 pasos desde el nodo 4:
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (1) at (0,0) {$4$};
\node[draw, circle] (2) at (1.5,0) {$6$};
\node[draw, circle] (3) at (3,0) {$2$};
\node[draw, circle] (4) at (4.5,0) {$5$};
\node[draw, circle] (5) at (6,0) {$2$};
\node[draw, circle] (6) at (7.5,0) {$5$};
\node[draw, circle] (7) at (9,0) {$2$};
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (2) -- (3);
\path[draw,thick,->] (3) -- (4);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (5) -- (6);
\path[draw,thick,->] (6) -- (7);
\end{tikzpicture}
\end{center}
Una forma sencilla de calcular un valor de $\texttt{succ}(x,k)$
es comenzar en el nodo $x$ y caminar $k$ pasos hacia adelante, lo que lleva $O(k)$ tiempo.
Sin embargo, utilizando el preprocesamiento, cualquier valor de $\texttt{succ}(x,k)$
se puede calcular en solo $O(\log k)$ tiempo.
La idea es precalcular todos los valores de $\texttt{succ}(x,k)$ donde
$k$ es una potencia de dos y como máximo $u$, donde $u$ es
el número máximo de pasos que alguna vez caminaremos.
Esto se puede hacer de manera eficiente, porque
podemos usar la siguiente recursión:
\begin{equation*}
\texttt{succ}(x,k) = \begin{cases}
\texttt{succ}(x) & k = 1\\
\texttt{succ}(\texttt{succ}(x,k/2),k/2) & k > 1\\
\end{cases}
\end{equation*}
Precalcular los valores lleva $O(n \log u)$ tiempo,
porque se calculan $O(\log u)$ valores para cada nodo.
En el gráfico anterior, los primeros valores son los siguientes:
\begin{center}
\begin{tabular}{r|rrrrrrrrr}
$x$ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
$\texttt{succ}(x,1)$ & 3 & 5 & 7 & 6 & 2 & 2 & 1 & 6 & 3 \\
$\texttt{succ}(x,2)$ & 7 & 2 & 1 & 2 & 5 & 5 & 3 & 2 & 7 \\
$\texttt{succ}(x,4)$ & 3 & 2 & 7 & 2 & 5 & 5 & 1 & 2 & 3 \\
$\texttt{succ}(x,8)$ & 7 & 2 & 1 & 2 & 5 & 5 & 3 & 2 & 7 \\
$\cdots$ \\
\end{tabular}
\end{center}
Después de esto, cualquier valor de $\texttt{succ}(x,k)$ se puede calcular
presentando el número de pasos $k$ como una suma de potencias de dos.
Por ejemplo, si queremos calcular el valor de $\texttt{succ}(x,11)$,
primero formamos la representación $11=8+2+1$.
Usando eso,
\[\texttt{succ}(x,11)=\texttt{succ}(\texttt{succ}(\texttt{succ}(x,8),2),1).\]
Por ejemplo, en el gráfico anterior
\[\texttt{succ}(4,11)=\texttt{succ}(\texttt{succ}(\texttt{succ}(4,8),2),1)=5.\]
Tal representación siempre consiste en
$O(\log k)$ partes, por lo que calcular un valor de $\texttt{succ}(x,k)$
lleva $O(\log k)$ tiempo.
\section{Detección de ciclos}
\index{ciclo}
\index{detección de ciclos}
Considere un gráfico sucesor que solo contiene
una ruta que termina en un ciclo.
Podemos hacer las siguientes preguntas:
si comenzamos nuestra caminata en el nodo de inicio,
¿cuál es el primer nodo en el ciclo?
¿y cuántos nodos contiene el ciclo?
Por ejemplo, en el gráfico
\begin{center}
\begin{tikzpicture}[scale=0.9]
\node[draw, circle] (5) at (0,0) {$5$};
\node[draw, circle] (4) at (-2,0) {$4$};
\node[draw, circle] (6) at (-1,1.5) {$6$};
\node[draw, circle] (3) at (-4,0) {$3$};
\node[draw, circle] (2) at (-6,0) {$2$};
\node[draw, circle] (1) at (-8,0) {$1$};
\path[draw,thick,->] (1) -- (2);
\path[draw,thick,->] (2) -- (3);
\path[draw,thick,->] (3) -- (4);
\path[draw,thick,->] (4) -- (5);
\path[draw,thick,->] (5) -- (6);
\path[draw,thick,->] (6) -- (4);
\end{tikzpicture}
\end{center}
comenzamos nuestra caminata en el nodo 1,
el primer nodo que pertenece al ciclo es el nodo 4, y el ciclo consiste
en tres nodos (4, 5 y 6).
Una forma sencilla de detectar el ciclo es caminar en el
gráfico y hacer un seguimiento de
todos los nodos que se han visitado. Una vez que un nodo se visita
por segunda vez, podemos concluir
que el nodo es el primer nodo en el ciclo.
Este método funciona en $O(n)$ tiempo y también usa
$O(n)$ memoria.
Sin embargo, existen mejores algoritmos para la detección de ciclos.
La complejidad temporal de tales algoritmos sigue siendo $O(n)$,
pero solo usan $O(1)$ memoria.
Esta es una mejora importante si $n$ es grande.
A continuación, discutiremos el algoritmo de Floyd que
alcanza estas propiedades.
\subsubsection{Algoritmo de Floyd}
\index{algoritmo de Floyd}
\key{Algoritmo de Floyd}\footnote{La idea del algoritmo se menciona en \cite{knu982}
y se atribuye a R. W. Floyd; sin embargo, no se sabe si Floyd realmente
descubrió el algoritmo.} camina hacia adelante
en el gráfico utilizando dos punteros $a$ y $b$.
Ambos punteros comienzan en un nodo $x$ que
es el nodo de inicio del gráfico.
Luego, en cada turno, el puntero $a$ camina
un paso adelante y el puntero $b$
camina dos pasos adelante.
El proceso continúa hasta
que los punteros se encuentran entre sí:
\begin{lstlisting}
a = succ(x);
b = succ(succ(x));
while (a != b) {
a = succ(a);
b = succ(succ(b));
}
\end{lstlisting}
En este punto, el puntero $a$ ha caminado $k$ pasos
y el puntero $b$ ha caminado $2k$ pasos,
por lo que la longitud del ciclo divide $k$.
Por lo tanto, el primer nodo que pertenece al ciclo
se puede encontrar moviendo el puntero $a$ al nodo $x$
y avanzando los punteros
paso a paso hasta que se encuentren de nuevo.
\begin{lstlisting}
a = x;
while (a != b) {
a = succ(a);
b = succ(b);
}
first = a;
\end{lstlisting}
Después de esto, la longitud del ciclo
se puede calcular de la siguiente manera:
\begin{lstlisting}
b = succ(a);
length = 1;
while (a != b) {
b = succ(b);
length++;
}
\end{lstlisting}