-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_k_vs_approx2.py
155 lines (132 loc) · 6.75 KB
/
test_k_vs_approx2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from ic_bfs_eval import *
from generate_seeds import LoadNodesFromFile, generateSeedFiles
import subprocess
from link_server import LinkServerCP
from ic_bfs_eval import EstimateInfluence
from bfs_seq import sequential_estimation
import cPickle as cp
from time import time
import argparse
from common_tools import *
from collections import defaultdict
import numpy as np
from scipy.stats import sem
def loadDataFromFiles(approx_fname,seq_fname):
'''
Loads results from the two files that contain the results:
in approx_fname:
line 1: approximated influence
line 2: value of k
line 3: maximal distance from any initial seed
in seq_fname:
line 1: estimated influence.
line 2: number of samples needed.
'''
approx_estimates = []
kkt_estimates = []
f = open(approx_fname, 'r')
approx = f.readline().strip()
while not approx == '':
k = int(f.readline().strip())
approx_estimates.append(float(approx))
f.readline()
approx = f.readline().strip()
f.close()
f=open(seq_fname,'r')
influence_estimate = f.readline().strip()
while not influence_estimate == '':
kkt_estimates.append(float(influence_estimate))
f.readline().strip()
influence_estimate = f.readline().strip()
f.close()
return k,approx_estimates, kkt_estimates
def calculateMeanErrorAndSEM(approx_fname,seq_fname):
k, approx_values, influence_estimates = loadDataFromFiles(approx_fname,seq_fname)
assert len(approx_values) == len(influence_estimates)
estimation_errors = []
for i, approx in enumerate(approx_values):
ratio = 1.0 * approx / influence_estimates[i]
if ratio >= 1:
estimation_errors.append(100 * (ratio - 1.0))
else:
estimation_errors.append(100 * (1.0 - ratio))
mean = (sum(estimation_errors)/len(estimation_errors))
std_err = sem(estimation_errors)
return k, mean, std_err
parser = argparse.ArgumentParser()
parser.add_argument('-csv', type = str, #required,
default = 'input/datasets/Wiki-Vote_stripped.txt', help="Name of source csv file (if we generate a new Link Server" )
parser.add_argument('-prob_method', type = int, #required,
default = 3, help='prob_method : method of setting edge-probabilities.\n 0 - fixed,\n1 - 1/in-deg,\n2 - uniform sample from the set [0.1,0.01].\n3 - u.a.r. Default: 3')
parser.add_argument('-undirected', type = int, #required,
default = 0, help='-undirected : is the graph an undirected graph. Default: 0 (no)')
parser.add_argument('-delim', type = int, default = 0,
help = '-delim : which delimiter (for edge-tuples) 0-tab, 1-space,2-comma. Default: 0')
parser.add_argument('-min', type = float, default = 0.01,
help = '-min : minimum fraction for k. algorithm. Default: 0.01')
parser.add_argument('-max', type = float, default = 0.11,
help = '-max : maximum fraction for k. algorithm. Default: 1.0')
parser.add_argument('-interval', type = float, default = 0.01,
help = '-interval : size of interval. Default: 0.01')
parser.add_argument('-samples', type = int, default = 10,
help = '-samples : number of samples of given seed set size. Default: 10')
parser.add_argument('-output', type = str, default = 'experiments/wiki/')
parser.add_argument('-title', type = str, default = '')
parser.add_argument('-dataset', type = str, default = 'input/datasets/wiki')
if __name__ == "__main__":
parameters = parser.parse_args()
min_frac, max_frac, interval, nSamples, edges_csv, delim_option, output, dataset = parameters.min, \
parameters.max, parameters.interval, parameters.samples, parameters.csv, parameters.delim, parameters.output, parameters.dataset
print "Input file: ", edges_csv
print "Output file prefix: ", output
delimiter = delim_dict[delim_option]
start_time = time()
bfs_method = 'seq'
print "creating link-server object"
if parameters.prob_method == 0:
edge_prob = 0.2
else:
edge_prob = [0.1,0.01]
L=LinkServerCP(dataset, edges_csv, create_new=True, prob_method=parameters.prob_method, prob=edge_prob, delim=delimiter, undirected=parameters.undirected)
print "n = ", L.getNumNodes()
V = LoadNodesFromFile(edges_csv, delimiter)
n = len(V)
print 'min_frac', min_frac
k_min = int(n * min_frac)
k_max = int(n * max_frac) + 1
k_step = int(n * interval)
generateSeedFiles(k_min, k_max, k_step, V, nSamples, 'experiments/' + output + "-seeds-")
mean_errors, std_errors = [], []
for k in xrange(k_min, k_max,k_step):
approx_fname = 'experiments/results/' + output + "-approx_errors-k_min-%d-k_max-%d-k-%d-samples-%d"%(k_min,k_max,k,nSamples)
seq_fname = 'experiments/results/' + output + "-seq-approx-errors-k-%d-samples-%d"%(k,nSamples)
print approx_fname
print seq_fname
removeFile(approx_fname)
seeds_fname = 'experiments/' + output + "-seeds-" + str(k) + ".cp"
print "Running approx algorithm for k=: ", k
subprocess.Popen("python ic_bfs_eval.py -dataset %s -res_fname %s -seeds %s -output_mode 2"%\
(dataset, approx_fname, seeds_fname), \
shell = True, stdout = subprocess.PIPE).stdout.read()
removeFile(seq_fname)
subprocess.Popen("python seq_estimation.py -dataset %s -seeds_file %s -results_file %s -output_mode 2"%\
(dataset, seeds_fname, seq_fname), shell=True,stdout=subprocess.PIPE).stdout.read()
k, mean_error, std_error = calculateMeanErrorAndSEM(approx_fname,seq_fname)
removeFile(approx_fname)
removeFile(seq_fname)
mean_errors.append(mean_error)
std_errors.append(std_error)
f = open("experiments/results/" + output + 'approximations-nSamples-%d-k_frac-%.3f-%.3f'%(nSamples, min_frac, max_frac),'w')
for k, mean, std_err in zip(xrange(k_min, k_max,k_step), mean_errors, std_errors):
f.write("%.3f\t%.3f\t%.3f\n"%(1.*k/n,mean,std_err))
f.close()
## print "Done running algorithms, now plotting..."
## x_axis = [1.*x/n for x in xrange(k_min,k_max,k_step)]
## print "x axis: ", x_axis
## print "mean errors: ", mean_errors
## print "std errors: ", std_errors
## print "title: ", parameters.title
## plot_fname = 'experiments/figures/' + output + 'approximations-nSamples-%d-k_frac-%.3f-%.3f.pdf'%(nSamples, min_frac, max_frac)
## #print "plot file name: ", plot_fname
## #plot2d([1.0*x/n for x in xrange(k_min,k_max,k_step)],[mean_errors], [std_errors], ['bla'], [r'$\frac{k}{n}$','Error percentage'], parameters.title, plot_fname)
print "Elapsed time: ", time() - start_time