-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathinference_invsr.py
115 lines (99 loc) · 4.15 KB
/
inference_invsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2023-03-11 17:17:41
import warnings
warnings.filterwarnings("ignore")
import argparse
import numpy as np
from pathlib import Path
from omegaconf import OmegaConf
from sampler_invsr import InvSamplerSR
from utils import util_common
from utils.util_opts import str2bool
from basicsr.utils.download_util import load_file_from_url
def get_parser(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument("-i", "--in_path", type=str, default="", help="Input path")
parser.add_argument("-o", "--out_path", type=str, default="", help="Output path")
parser.add_argument("--bs", type=int, default=1, help="Batchsize for loading image")
parser.add_argument("--chopping_bs", type=int, default=8, help="Batchsize for chopped patch")
parser.add_argument("-t", "--timesteps", type=int, nargs="+", help="The inversed timesteps")
parser.add_argument("-n", "--num_steps", type=int, default=1, help="Number of inference steps")
parser.add_argument(
"--cfg_path", type=str, default="./configs/sample-sd-turbo.yaml", help="Configuration path.",
)
parser.add_argument(
"--sd_path", type=str, default="", help="Path for Stable Diffusion Model",
)
parser.add_argument(
"--started_ckpt_path", type=str, default="", help="Checkpoint path for noise predictor"
)
parser.add_argument(
"--tiled_vae", type=str2bool, default='true', help="Enabled tiled VAE.",
)
parser.add_argument(
"--color_fix", type=str, default='', choices=['wavelet', 'ycbcr'], help="Fix the color shift",
)
parser.add_argument(
"--chopping_size", type=int, default=128, help="Chopping size when dealing large images"
)
args = parser.parse_args()
return args
def get_configs(args):
configs = OmegaConf.load(args.cfg_path)
if args.timesteps is not None:
assert len(args.timesteps) == args.num_steps
configs.timesteps = sorted(args.timesteps, reverse=True)
else:
if args.num_steps == 1:
configs.timesteps = [200,]
elif args.num_steps == 2:
configs.timesteps = [200, 100]
elif args.num_steps == 3:
configs.timesteps = [200, 100, 50]
elif args.num_steps == 4:
configs.timesteps = [200, 150, 100, 50]
elif args.num_steps == 5:
configs.timesteps = [250, 200, 150, 100, 50]
else:
assert args.num_steps <= 250
configs.timesteps = np.linspace(
start=args.started_step, stop=0, num=args.num_steps, endpoint=False, dtype=np.int64()
).tolist()
print(f'Setting timesteps for inference: {configs.timesteps}')
# path to save Stable Diffusion
sd_path = args.sd_path if args.sd_path else "./weights"
util_common.mkdir(sd_path, delete=False, parents=True)
configs.sd_pipe.params.cache_dir = sd_path
# path to save noise predictor
if args.started_ckpt_path:
started_ckpt_path = args.started_ckpt_path
else:
started_ckpt_name = "noise_predictor_sd_turbo_v5.pth"
started_ckpt_dir = "./weights"
util_common.mkdir(started_ckpt_dir, delete=False, parents=True)
started_ckpt_path = Path(started_ckpt_dir) / started_ckpt_name
if not started_ckpt_path.exists():
load_file_from_url(
url="https://huggingface.co/OAOA/InvSR/resolve/main/noise_predictor_sd_turbo_v5.pth",
model_dir=started_ckpt_dir,
progress=True,
file_name=started_ckpt_name,
)
configs.model_start.ckpt_path = str(started_ckpt_path)
configs.bs = args.bs
configs.tiled_vae = args.tiled_vae
configs.color_fix = args.color_fix
configs.basesr.chopping.pch_size = args.chopping_size
if args.bs > 1:
configs.basesr.chopping.extra_bs = 1
else:
configs.basesr.chopping.extra_bs = args.chopping_bs
return configs
def main():
args = get_parser()
configs = get_configs(args)
sampler = InvSamplerSR(configs)
sampler.inference(args.in_path, out_path=args.out_path, bs=args.bs)
if __name__ == '__main__':
main()