-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathengine.py
87 lines (71 loc) · 3.12 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import sys, time, copy
import torch
import torch.nn as nn
import tqdm
from timm.models import create_model
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler
def prepare_training(args):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = create_model('eegt').to(device)
optimizer = create_optimizer(args, model)
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = nn.CrossEntropyLoss()
loss_scaler = NativeScaler()
print(device)
return model, optimizer, lr_scheduler, criterion, device, loss_scaler
def train_model(model, criterion, optimizer, scheduler, device, dataloaders, args={'dataset_sizes': {'train': 1000, 'val': 197, 'test':200}}):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(50):
sys.stdout.flush()
print('Epoch {}/{}'.format(epoch+1, 50))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val', 'test']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in tqdm.tqdm(dataloaders[phase]):
inputs = inputs.type(torch.cuda.FloatTensor).to(device)
labels = labels.type(torch.cuda.LongTensor).to(device).squeeze(1)
# print(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step(epoch=epoch)
epoch_loss = running_loss / args['dataset_sizes'][phase]
epoch_acc = running_corrects.double() / args['dataset_sizes'][phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model