-
Notifications
You must be signed in to change notification settings - Fork 0
/
CNNEncoder.py
126 lines (105 loc) · 4.36 KB
/
CNNEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.shrinkage = Shrinkage(out_channels, gap_size=(1, 1))
#residual function
self.residual_function = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels * BasicBlock.expansion),
self.shrinkage
)
#shortcut
self.shortcut = nn.Sequential()
#the shortcut output dimension is not the same with residual function
#use 1*1 convolution to match the dimension
if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
)
def forward(self, x):
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
class Shrinkage(nn.Module):
def __init__(self, channel, gap_size):
super(Shrinkage, self).__init__()
self.gap = nn.AdaptiveAvgPool2d(gap_size)
self.fc = nn.Sequential(
nn.Linear(channel, channel),
nn.BatchNorm1d(channel),
nn.ReLU(inplace=True),
nn.Linear(channel, channel),
nn.Sigmoid(),
)
def forward(self, x):
x_raw = x
x = torch.abs(x)
x_abs = x
x = self.gap(x)
x = torch.flatten(x, 1)
# average = torch.mean(x, dim=1, keepdim=True)
average = x
x = self.fc(x)
x = torch.mul(average, x)
x = x.unsqueeze(2).unsqueeze(2)
# soft thresholding
sub = x_abs - x
zeros = sub - sub
n_sub = torch.max(sub, zeros)
x = torch.mul(torch.sign(x_raw), n_sub)
return x
class RSNet(nn.Module):
def __init__(self, block, num_block, num_classes=100):
super().__init__()
self.in_channels = 16
self.conv1 = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True))
#we use a different inputsize than the original paper
#so conv2_x's stride is 1
self.conv2_x = self._make_layer(block, 16, num_block[0], 1)
self.conv3_x = self._make_layer(block, 32, num_block[1], 2)
self.conv4_x = self._make_layer(block, 64, num_block[2], 2)
self.conv5_x = self._make_layer(block, 128, num_block[3], 2)
self.avg_pool = nn.AdaptiveAvgPool2d((28, 28))
self.fc = nn.Linear(128 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
"""make rsnet layers(by layer i didnt mean this 'layer' was the
same as a neuron netowork layer, ex. conv layer), one layer may
contain more than one residual shrinkage block
Args:
block: block type, basic block or bottle neck block
out_channels: output depth channel number of this layer
num_blocks: how many blocks per layer
stride: the stride of the first block of this layer
Return:
return a rsnet layer
"""
# we have num_block blocks per layer, the first block
# could be 1 or 2, other blocks would always be 1
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
output = self.conv1(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
output = self.conv4_x(output)
output = self.conv5_x(output)
output = self.avg_pool(output)
# output = output.view(output.size(0), -1)
# output = self.fc(output)
return output
def rsnet():
""" return a RSNet 18 object
"""
return RSNet(BasicBlock, [2, 2, 2, 2])