-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrf.py
60 lines (38 loc) · 1.12 KB
/
rf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
'random forest on kin8nm'
import numpy as np
from sklearn.ensemble import RandomForestRegressor as RF
from sklearn.metrics import mean_squared_error as MSE
from math import sqrt
train_file = 'data/train.csv'
valid_file = 'data/validation.csv'
test_file = 'data/test.csv'
print "loading data..."
train = np.loadtxt( open( train_file ), delimiter = "," )
valid = np.loadtxt( open( valid_file ), delimiter = "," )
test = np.loadtxt( open( test_file ), delimiter = "," )
train_y = train[:,-1]
valid_y = valid[:,-1]
test_y = test[:,-1]
train_x = train[:,0:-1]
valid_x = valid[:,0:-1]
test_x = test[:,0:-1]
print "training..."
trees = 100
rf = RF( n_estimators = trees, verbose = True )
rf.fit( train_x, train_y )
p_valid = rf.predict( valid_x )
p_test = rf.predict( test_x )
###
valid_rmse = sqrt( MSE( valid_y, p_valid ))
test_rmse = sqrt( MSE( test_y, p_test ))
print "validation RMSE:", valid_rmse
print "test RMSE:", test_rmse
"""
some runs
validation RMSE: 0.140025930655
test RMSE: 0.140510695461
validation RMSE: 0.136980260324
test RMSE: 0.138909475351
validation RMSE: 0.138677092046
test RMSE: 0.138911281774
"""