-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcode_gen_and_eval.py
525 lines (445 loc) · 21.6 KB
/
code_gen_and_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import openai
import time
import os
import json
import re
import multiprocessing
import numpy as np
import argparse
import math
from math import sqrt
import pandas as pd
import rdkit
from rdkit import Chem, rdBase
from rdkit.Chem import rdMolDescriptors
from rdkit.Chem import Descriptors, Crippen, Lipinski, MolSurf, Fragments
from rdkit.Chem.rdMolDescriptors import CalcNumAliphaticCarbocycles, CalcNumAromaticCarbocycles
from mordred import Weight, WienerIndex, RotatableBond, EccentricConnectivityIndex
from rdkit.Chem import rdchem
from rdkit.Chem import rdmolops
from rdkit.Chem import AllChem
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.metrics import roc_auc_score, mean_absolute_error
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='bbbp', help='dataset/task name')
parser.add_argument('--subtask', type=str, default='', help='subtask of tox21/sider/qm9 dataset')
parser.add_argument('--model', type=str, default='galactica-6.7b', help='LLM model')
parser.add_argument('--knowledge_type', type=str, default='all', help='synthesize/inference/all')
parser.add_argument('--list_num', type=int, default=30, help='number of sample lists (30/50) for inference')
parser.add_argument('--output_dir', type=str, default='eval_result', help='output folder')
parser.add_argument('--code_gen_folder', type=str, default='eval_code_generation_repo')
parser.add_argument('--api_key', type=str, default='', help='openai key')
args = parser.parse_args()
prompt = '''Question: Please generate the following rules to code like the following examples. You can define function name by yourself. Please ensure the code is executable! Each rule can have multiple functions! Don't make mistakes like ''rdkit.Chem.rdMolDescriptors' has no attribute 'CalXXX'. Don't skip rules! All functions have to return numbers and takes one argument mol!:
# Rule 1: Molecule should have a minimum of two hydrogen bond donors
def rule55302_hb_donors1232143(mol):
return rdMolDescriptors.CalcNumHBD(mol)
# Rule 2: The molecule should have at least three hydrogen bond acceptors
def rule950021_hb_acceptor35749(mol):
return rdMolDescriptors.CalcNumHBA(mol)
---------------------'''
fix_prompt = """Please regenerate and ensure all the code are executable and correct!"""
# load csv datasets from a directory
def load_data(which='train'):
if args.dataset in ["alpha", "c_v", "Delta_epsilon", "epsilon_HOMO",
"epsilon_LUMO", "G", "H", "mu", "R^2", "U_0", "U", "ZPVE"]:
dataset_folder = os.path.join('scaffold_datasets', 'qm9')
else:
dataset_folder = os.path.join('scaffold_datasets', args.dataset)
if args.subtask == "":
file_name = args.dataset + '_' + which + '.csv'
else:
file_name = args.subtask + '_' + which + '.csv'
file_path = os.path.join(dataset_folder, file_name)
df = pd.read_csv(file_path)
if args.dataset == 'bbbp':
y = df['p_np'].tolist()
elif args.dataset == 'clintox':
y = df['CT_TOX'].tolist()
elif args.dataset == 'hiv':
y = df['HIV_active'].tolist()
elif args.dataset == 'bace':
y = df['Class'].tolist()
elif args.dataset == 'lipophilicity':
y = df['exp'].tolist()
elif args.dataset == 'esol':
y = df['ESOL predicted log solubility in mols per litre'].tolist()
elif args.dataset == 'freesolv':
y = df['calc'].tolist()
elif args.dataset in ['tox21', 'sider', 'qm9']:
y = df[args.subtask].tolist()
else:
raise NotImplementedError(f"Load Dataset Error")
if args.dataset != 'bace':
smiles_list = df['smiles'].tolist()
else:
smiles_list = df['mol'].tolist()
return smiles_list, y
# automatically generate code based on prompt
def auto_gen_code(prompt):
openai.api_key = args.api_key
while True:
try:
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=2000,
temperature=0.1,
)
# If no exception is raised, the request was successful, so we break out of the loop
break
except Exception as e:
print(f"An error occurred: {str(e)}")
time.sleep(2)
generated_code = response.choices[0].message.content
pattern = r"(def [a-zA-Z_][a-zA-Z0-9_]*\(.+\):(?:\n(?: .+\n)+)+)"
matches = re.findall(pattern, generated_code, re.MULTILINE)
generated_code = '\n'.join(matches)
return generated_code
def worker(content):
temp_prompt = prompt + content
return auto_gen_code(temp_prompt)
def get_function_code(generated_code, function_name):
lines = generated_code.split('\n')
start = -1
for i in range(len(lines)):
if lines[i].strip().startswith('def ' + function_name):
start = i
break
if start == -1:
return None # Function not found
end = start + 1
while end < len(lines) and lines[end].startswith(' '): # Continue until we reach a line not indented
end += 1
return '\n'.join(lines[start:end])
def update_temp_py_file(code_repo_dir, old_function_code, rectified_code):
# read the original file
with open(code_repo_dir, 'r') as f:
file_content = f.read()
# replace the old function definition with the new one
file_content = file_content.replace(old_function_code, rectified_code)
# write the content back to the file
with open(code_repo_dir, 'w') as f:
f.write(file_content)
def get_code_repo():
if args.subtask != '':
subtask_name = '_' + args.subtask
else:
subtask_name = ''
if args.knowledge_type == 'inference':
subfolder = f"sample_{args.list_num}"
else:
subfolder = ""
output_folder = os.path.join(args.code_gen_folder, args.model, args.dataset, args.knowledge_type, subfolder)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
file_name = f"{args.model}_{args.dataset}{subtask_name}_{args.knowledge_type}_rules.txt"
code_repo_dir = os.path.join(output_folder, file_name)
return code_repo_dir
def validate_functions(generated_code):
exec(generated_code, globals())
# Create a file using generated_code
code_repo_dir = get_code_repo()
with open(code_repo_dir, 'w') as f:
f.write(generated_code)
# Get a list of all the function names in the generated code
function_names = [line.split()[1].split('(')[0] for line in generated_code.split('\n') if line.startswith('def ')]
valid_function_names = function_names.copy() # Make a copy of the function names
MAX_RETRIES = 3
# Create a dummy molecule for testing functions
mol = Chem.MolFromSmiles('CC')
skipped_indices = [] # A list to record the indices of the skipped functions
features = []
for j, function_name in enumerate(function_names):
solve_flag = False
try:
feature = globals()[function_name](mol)
if feature is None or not isinstance(feature, (int, float)):
valid_function_names.remove(function_name)
else:
solve_flag = True
except Exception as e:
error_message = str(e)
for retry in range(MAX_RETRIES):
print(f"Error in function {function_name}: {error_message}")
print("Attempting to rectify the code...")
if retry == 0:
function_code = get_function_code(generated_code, function_name)
old_function_code = function_code
rectify_prompt = ("The function is incorrect. Please rectify the code! Here is the function code and its corresponding error! Please keep the function name unchanged! The function cannot raise errors and can only return number!")
rectify_prompt += f"\n\n### Function {function_name}:\n{function_code}\n\n### Error:\n{error_message}\n\n### Rectified Code:"
rectified_code = auto_gen_code(rectify_prompt)
# Update function name based on rectified_code
try: # Try executing the rectified function
exec(rectified_code, globals()) # Replace the erroneous function with the rectified one
# get the new function name in rectified_code
function_name = [line.split()[1].split('(')[0] for line in rectified_code.split('\n') if line.startswith('def ')][0]
feature = globals()[function_name](mol)
if feature is None:
function_code = rectified_code
continue
if feature is not None and isinstance(feature, (int, float)):
features.append(feature)
solve_flag = True
except Exception as e:
print(f"Error in rectified function {function_name} after {retry + 1} retries: {str(e)}")
function_code = rectified_code
error_message = str(e)
solve_flag = False
if solve_flag:
break
if j not in skipped_indices and not solve_flag:
skipped_indices.append(j)
print(f"Skipping function {function_name} after {MAX_RETRIES} retries.")
if solve_flag:
update_temp_py_file(code_repo_dir, old_function_code, rectified_code)
else:
update_temp_py_file(code_repo_dir, old_function_code, '')
if not solve_flag:
valid_function_names.remove(function_name) # Remove the function from the list
print(f"Discarding function {function_name} after {MAX_RETRIES} retries.")
return valid_function_names, skipped_indices
def exec_code(smiles_list, valid_function_names):
smiles_feat = []
for i, smiles in enumerate(smiles_list):
mol = Chem.MolFromSmiles(smiles)
features = []
for function_name in valid_function_names: # Loop over the valid function names
try:
feature = globals()[function_name](mol)
if feature is not None and isinstance(feature, (int, float)):
features.append(feature)
else:
features.append(np.nan)
except Exception as e:
print(f"Unexpected error in function {function_name}: {str(e)}")
features.append(np.nan)
smiles_feat.append(features)
return smiles_feat
def dropna(X):
X = pd.DataFrame(X)
X = X.dropna(axis=1)
X = X.values.tolist()
return X
def evaluation(generated_code, valid_function_names):
smiles_list, y_train = load_data('train')
X_train = exec_code(smiles_list, valid_function_names)
smiles_list, y_valid = load_data('valid')
X_valid = exec_code(smiles_list, valid_function_names)
smiles_list, y_test = load_data('test')
X_test = exec_code(smiles_list, valid_function_names)
seeds = [0, 1, 2, 3, 4]
if args.subtask != '':
subtask_name = '_' + args.subtask
else:
subtask_name = ''
if args.knowledge_type in ['inference', 'all']:
subfolder = f"sample_{args.list_num}"
else:
subfolder = ''
result_folder = os.path.join(args.output_dir, args.model, args.dataset, args.knowledge_type, subfolder)
if not os.path.exists(result_folder):
os.makedirs(result_folder)
X_train = dropna(X_train)
X_valid = dropna(X_valid)
X_test = dropna(X_test)
if args.dataset in ['bbbp', 'clintox', 'hiv', 'bace', 'tox21', 'sider']:
average_roc_auc_test = []
average_roc_auc_valid = []
# Normalize scaler
scaler = StandardScaler()
X_valid = [sublist[:len(X_train[0])] for sublist in X_valid]
X_test = [sublist[:len(X_train[0])] for sublist in X_test]
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)
for seed in seeds:
# random forest
with open('llm4sd_models.json', 'r') as model_parms:
best_models = json.load(model_parms)
if args.dataset in ['sider', 'tox21']:
best_params = best_models[args.dataset][args.subtask]
else:
best_params = best_models[args.dataset]
best_params['random_state'] = seed
clf = RandomForestClassifier(**best_params)
clf.fit(X_train, y_train)
y_valid_proba = clf.predict_proba(X_valid)[:, 1]
y_test_proba = clf.predict_proba(X_test)[:, 1]
average_roc_auc_test.append(roc_auc_score(y_test, y_test_proba))
average_roc_auc_valid.append(roc_auc_score(y_valid, y_valid_proba))
print('=================================================')
print(f"Average test ROC-AUC: {np.mean(average_roc_auc_test)}")
print(f"Average valid ROC-AUC: {np.mean(average_roc_auc_valid)}")
print(f"Standard deviation of test ROC-AUC: {np.std(average_roc_auc_test)}")
print(f"Standard deviation of valid ROC-AUC: {np.std(average_roc_auc_valid)}")
print('===================================================')
# store the results
file_name = f'{args.model}_{args.dataset}{subtask_name}_{args.knowledge_type}_rules_test_roc_auc.txt'
file_path = os.path.join(result_folder, file_name)
with open(file_path, 'w') as f:
for item in average_roc_auc_test:
f.write("%s\n" % item)
f.write(f"\n\nAverage test ROC-AUC: {np.mean(average_roc_auc_test)} \n")
f.write(f"Standard deviation of test ROC-AUC: {np.std(average_roc_auc_test)}")
elif args.dataset in ['esol', 'lipophilicity', 'freesolv']:
rmse_test_list = []
rmse_valid_list = []
for seed in seeds:
with open('llm4sd_models.json', 'r') as model_parms:
best_models = json.load(model_parms)
best_params = best_models[args.dataset]
best_params['random_state'] = seed
clf = RandomForestRegressor(**best_params)
clf.fit(X_train, y_train)
y_valid_pred = clf.predict(X_valid)
y_test_pred = clf.predict(X_test)
# Compute the RMSE
rmse_test = sqrt(mean_squared_error(y_test, y_test_pred))
rmse_valid = sqrt(mean_squared_error(y_valid, y_valid_pred))
rmse_test_list.append(rmse_test)
rmse_valid_list.append(rmse_valid)
print('=================================================')
print(f"Average test RMSE: {np.mean(rmse_test_list)}")
print(f"Average valid RMSE: {np.mean(rmse_valid_list)}")
print(f"Standard deviation of test RMSE: {np.std(rmse_test_list)}")
print(f"Standard deviation of valid RMSE: {np.std(rmse_valid_list)}")
print('=================================================')
# store the results
file_name = f'{args.model}_{args.dataset}_{args.knowledge_type}_rules_test_rmse.txt'
file_path = os.path.join(result_folder, file_name)
with open(file_path, 'w') as f:
for item in rmse_test_list:
f.write("%s\n" % item)
f.write(f"\n\nAverage test RMSE: {np.mean(rmse_test_list)} \n")
f.write(f"Standard deviation of test RMSE: {np.std(rmse_test_list)}")
elif args.dataset == 'qm9':
mae_test_list = []
mae_valid_list = []
scaler = StandardScaler()
np.nan_to_num(X_train, nan=0, posinf=0, neginf=0)
np.nan_to_num(X_valid, nan=0, posinf=0, neginf=0)
np.nan_to_num(X_test, nan=0, posinf=0, neginf=0)
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)
for seed in seeds:
# Normalize scaler
clf = RandomForestRegressor(random_state=seed)
clf.fit(X_train, y_train)
y_valid_pred = clf.predict(X_valid)
y_test_pred = clf.predict(X_test)
# Compute the MAE
mae_test = mean_absolute_error(y_test, y_test_pred)
mae_valid = mean_absolute_error(y_valid, y_valid_pred)
mae_test_list.append(mae_test)
mae_valid_list.append(mae_valid)
print('=================================================')
print(f"Average test MAE: {np.mean(mae_test_list)}")
print(f"Average valid MAE: {np.mean(mae_valid_list)}")
print(f"Standard deviation of test MAE: {np.std(mae_test_list)}")
print(f"Standard deviation of valid MAE: {np.std(mae_valid_list)}")
print('=================================================')
# store the results
file_name = f'{args.model}_{args.subtask}_{args.knowledge_type}_rules_test_mae.txt'
file_path = os.path.join(result_folder, file_name)
with open(file_path, 'w') as f:
for item in mae_test_list:
f.write("%s\n" % item)
f.write(f"\n\nAverage test MAE: {np.mean(mae_test_list)} \n")
f.write(f"Standard deviation of test MAE: {np.std(mae_test_list)}")
else:
raise NotImplementedError(f"Dataset Name Error: {args.dataset}.")
def reward_calculation(contents):
max_tries = 3
for i in range(max_tries):
solve_flag = False
try:
pool = multiprocessing.Pool(multiprocessing.cpu_count())
generated_code_list = pool.map(worker, contents)
# obtain the first element of each tuple
generated_code_list_result = [x for x in generated_code_list]
generated_code = '\n'.join(generated_code_list_result)
valid_function_names, skipped_indices = validate_functions(generated_code)
solve_flag = True
break
except Exception as e:
print(f"Error in reward_calculation(): {str(e)}")
# retry the whole process
continue
if not solve_flag:
print(f"Failed to generate code after {max_tries} retries.")
return None
# prine number of function names
print('number of generated functions: ', len(valid_function_names))
code_repo_dir = get_code_repo()
with open(code_repo_dir, 'r') as f:
generated_code = f.read()
evaluation(generated_code, valid_function_names)
return generated_code
def split_string_into_parts(s, max_lines_per_part=10):
lines = s.splitlines()
num_parts = math.ceil(len(lines) / max_lines_per_part)
split_points = [len(lines) * i // num_parts for i in range(num_parts + 1)]
return ['\n'.join(lines[split_points[i]:split_points[i + 1]]) for i in range(num_parts)]
def get_synthesize_file_path():
dataset = args.dataset
if args.dataset in ['sider', 'tox21']:
subtask_name = "_" + args.subtask
elif args.dataset == 'qm9':
subtask_name = ""
dataset = args.subtask
else:
subtask_name = ""
synthesize_file_folder = os.path.join('synthesize_model_response', args.model, dataset)
synthesize_file_name = f'{args.model}{subtask_name}_pk_response.txt'
synthesize_file_path = os.path.join(synthesize_file_folder, synthesize_file_name)
return synthesize_file_path
def get_inference_file_path():
if args.subtask != '':
subtask_name = args.subtask + '_'
else:
subtask_name = ""
inference_file_folder = os.path.join('summarized_inference_rules', args.model, args.dataset)
inference_file_name = f"{args.model}_{args.dataset}_{subtask_name}dk_response_sample_{args.list_num}_summarized_rules.txt"
inference_file_path = os.path.join(inference_file_folder, inference_file_name)
return inference_file_path
def get_synthesize_inference_code():
if args.subtask != '':
subtask_name = '_' + args.subtask
else:
subtask_name = ''
synthesize_folder = os.path.join(args.code_gen_folder, args.model, args.dataset, "synthesize")
inference_folder = os.path.join(args.code_gen_folder, args.model, args.dataset, "inference", f"sample_{args.list_num}")
synthesize_filename = os.path.join(synthesize_folder, f"{args.model}_{args.dataset}{subtask_name}_synthesize_rules.txt")
inference_filename = os.path.join(inference_folder, f"{args.model}_{args.dataset}{subtask_name}_inference_rules.txt")
if not os.path.exists(synthesize_filename) or not os.path.exists(inference_filename):
raise NotImplementedError(f"Please run synthesize code and inference code first")
with open(synthesize_filename, 'r') as f:
synthesize_code = f.read()
with open(inference_filename, 'r') as f:
inference_code = f.read()
all_generated_code = synthesize_code + '\n' + inference_code
return all_generated_code
if __name__ == '__main__':
if args.knowledge_type == 'synthesize':
syn_file_path = get_synthesize_file_path()
with open(syn_file_path, 'r') as f:
content = f.read()
contents = split_string_into_parts(content)
reward_calculation(contents)
elif args.knowledge_type == 'inference':
infer_file_path = get_inference_file_path()
with open(infer_file_path, 'r') as f:
content = f.read()
contents = split_string_into_parts(content)
reward_calculation(contents)
elif args.knowledge_type == 'all':
generated_code = get_synthesize_inference_code()
exec(generated_code, globals())
function_names = [line.split()[1].split('(')[0] for line in generated_code.split('\n') if line.startswith('def ')]
evaluation(generated_code, function_names)
else:
raise NotImplementedError(f"knowledge_type error")