Skip to content

1084667371/ExtractLine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

不会画线稿?PaddlePaddle让你秒变灵魂画手!

线稿可以让空无一物的画纸产生正形负形,更能以长短虚实、疏密深淡、张弛得当之势自然勾勒物象之形、神、光、色、体积、质感等,不同造诣的画者能驾驭出不同的画面,难度之大深不可测,变化多端甚是神奇。

线描技法源远流长,可以追溯到我们中国画的白描,中国古代有许多白描大师,如顾恺之、李公麟等都为我国留下了文艺瑰宝。

但线稿的另一种意义是从某个图片转变而来,只有黑色线条,便于临摹,十分方便。

PaddleHub转换

由开发者Mr.郑先生_提供 【PaddleHub模型贡献】一行代码实现从彩色图提取素描线稿转换成PaddleHub让大家更方便的使用

一、效果展示

图片效果


视频效果

原始视频链接: https://player.bilibili.com/player.html?aid=373068021&bvid=BV14Z4y1g7uG&cid=264240737&page=1

将视频内容转换为线稿: https://player.bilibili.com/player.html?aid=800614383&bvid=BV1zy4y1v7kQ&cid=262900480&page=1

二、实现步骤

1.导入必要的库和模型

import cv2
from scipy import ndimage
from model import Model
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES']='0'
model = Model('inference_model',use_gpu=True,use_mkldnn=False,combined=False)

2.处理视频

将视频按帧进行处理,并保存到images文件夹中。

def transform_video_to_image(video_file_path, img_path):
    '''
    将视频中每一帧保存成图片
    '''
    video_capture = cv2.VideoCapture(video_file_path)
    fps = video_capture.get(cv2.CAP_PROP_FPS)
    count = 0
    while(True):
        ret, frame = video_capture.read() 
        if ret:
            cv2.imwrite(img_path + '%d.jpg' % count, frame)
            count += 1
        else:
            break
    video_capture.release()
    print('视频图片保存成功, 共有 %d 张' % count)
    return fps
fps = transform_video_to_image('shipin.mp4', 'images/')

3.图片线稿化

from function import *

for home, dirs, files in os.walk('images'):
        for filename in files:
            fullname = os.path.join(home, filename)
            from_mat = cv2.imread(fullname)
            width = float(from_mat.shape[1])
            height = float(from_mat.shape[0])
            new_width = 0
            new_height = 0
            if (width > height):
                from_mat = cv2.resize(from_mat, (512, int(512 / width * height)), interpolation=cv2.INTER_AREA)
                new_width = 512
                new_height = int(512 / width * height)
            else:
                from_mat = cv2.resize(from_mat, (int(512 / height * width), 512), interpolation=cv2.INTER_AREA)
                new_width = int(512 / height * width)
                new_height = 512

            from_mat = from_mat.transpose((2, 0, 1))
            light_map = np.zeros(from_mat.shape, dtype=np.float)
            for channel in range(3):
                light_map[channel] = get_light_map_single(from_mat[channel])
            light_map = normalize_pic(light_map)
            light_map = resize_img_512_3d(light_map)
            light_map = light_map.astype('float32')
            

            line_mat = model.predict(np.expand_dims(light_map, axis=0).astype('float32'))
            # 去除 batch 维度 (512, 512, 3)
            line_mat = line_mat.transpose((3, 1, 2, 0))[0]
            # 裁剪 (512, 384, 3)
            line_mat = line_mat[0:int(new_height), 0:int(new_width), :]

            line_mat = np.amax(line_mat, 2)
            # 降噪
            show_active_img_and_save_denoise(line_mat, './output/' + filename)
            print('图片' + filename + '已经完成')
print('全部图片转换成功。')

4.合并视频

def combine_image_to_video(comb_path, output_file_path, fps=30, is_print=False):
    '''
        合并图像到视频
    '''
    fourcc = cv2.VideoWriter_fourcc(*'MP4V')    
    
    file_items = os.listdir(comb_path)
    file_len = len(file_items)
    # print(comb_path, file_items)
    if file_len > 0 :
        temp_img = cv2.imread(os.path.join(comb_path, file_items[0]))
        img_height, img_width = temp_img.shape[0], temp_img.shape[1]
        
        out = cv2.VideoWriter(output_file_path, fourcc, fps, (img_width, img_height))

        for i in range(file_len):
            pic_name = os.path.join(comb_path, str(i)+".jpg")
            if is_print:
                print(i+1,'/', file_len, ' ', pic_name)
            img = cv2.imread(pic_name)
            out.write(img)
        out.release()
combine_image_to_video('output', 'work/mp4_analysis.mp4', fps)

5.合并音频

#音频获取
def getMusic(video_name):

    """
    获取指定视频的音频
    """
    # 读取视频文件
    video = VideoFileClip(video_name)
    # 返回音频

    return video.audio
#音频添加
def addMusic(video_name, audio,output_video):
    
    """实现混流,给video_name添加音频"""
    # 读取视频
    video = VideoFileClip(video_name)
    # 设置视频的音频
    video = video.set_audio(audio)
    # 保存新的视频文件

    video.write_videofile(output_video)

from moviepy.editor import *
addMusic('work/mp4_analysis.mp4',getMusic('shipin.mp4'),'work/mp4_analysisnew.mp4')

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages