-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha3c_2.py
498 lines (383 loc) · 14.3 KB
/
a3c_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
"""
Code is heavily based on this: https://jaromiru.com/2017/03/26/lets-make-an-a3c-implementation/
Also based on my dqn code (especially for the nn architecture)
"""
import numpy as np
import tensorflow as tf
import gym, time, random, threading, os, pickle
from skimage.transform import resize
from skimage.color import rgb2gray
from collections import deque
import matplotlib.pyplot as plt
# constants
ENV = 'Pong-v0'
SAVE_DIR = ENV + '-ckpts-a3c'
SAVE_PARAM_PATH = SAVE_DIR + '/params'
SHOW_ENV_TEST = False
RUN_TRAIN = True
NUM_ACTIONS = None # we'll change this later
RUN_TIME = 100000
THREADS = 8
OPTIMIZERS = 1
THREAD_DELAY = 0.001
GAMMA = 0.99
T_MAX = 20
EPS_START = 1
EPS_STOP = 0.1
EPS_STOP_LIST = [0.1, 0.01, 0.5]
EPS_STOP_DIST = [0.4, 0.3, 0.3]
EPS_STEPS = 40000
BATCH_SIZE = 32
TRAIN_SIZE = 1024 # updates ocassionally
SAVE_FREQ = 20 # how frequently do we save
FRAME_SKIP = 4
LEARN_RATE = 7e-4
LEARN_STEPS = 300000
RMS_DECAY = 0.99
LOSS_V = 0.5 # v loss coefficeint
LOSS_ENTROPY = 0.01 # entropy coefficient
class Brain:
def __init__(self):
self.train_queue = []
self.lock_queue = threading.Lock()
self.save_count = SAVE_FREQ
self.graph = tf.Graph()
self.graph.as_default()
with self.graph.as_default():
self.build_graph()
self.init_graph()
def init_graph(self):
"""
Initializes graph, loads from checkpoint if necessary.
"""
self.session = tf.Session(graph = self.graph)
self.saver = tf.train.Saver()
# if save_dir exists, load it
# we want to restore from latest version
if os.path.isdir(SAVE_DIR):
print("Loading from file")
ckpt = tf.train.latest_checkpoint(SAVE_DIR)
self.num = int(ckpt[len(SAVE_PARAM_PATH) + 1:]) # get number of latest checkpoint
self.saver.restore(self.session, ckpt)
print("NUM: ", self.num)
else: # otherwise initialize randomly
print("Initializing randomly")
self.session.run(tf.global_variables_initializer())
self.num = 0
def save_graph(self):
"""
Saves graph to checkpoint.
"""
self.saver.save(self.session, SAVE_PARAM_PATH, global_step = self.num)
def build_graph(self):
"""
Defines the deep network on which we train.
Copied from the dqn implementation.
"""
# input is 84 x 84 x 4, as per the dqn paper
# the first index represents batch size
self.s_t = tf.placeholder(tf.float32, shape = [None, 80, 80, 4])
self.a_t = tf.placeholder(tf.float32, shape = [None, NUM_ACTIONS])
self.r_t = tf.placeholder(tf.float32, shape = [None, 1])
self.learn_rate = tf.placeholder(tf.float32, shape = [])
# input tensor shape: [batch_size, 84, 84, 4]
# output tensor shape: [batch_size, 21, 21, 16]
conv1 = tf.layers.conv2d(
inputs = self.s_t,
filters = 16,
kernel_size = [8, 8],
strides = 4,
padding = 'same',
activation = tf.nn.relu)
#assert(conv1.shape[1:4] == [21, 21, 16])
# input tensor shape: [batch_size, 21, 21, 16]
# output tensor shape: [batch_size, 11, 11, 32]
conv2 = tf.layers.conv2d(
inputs = conv1,
filters = 32,
kernel_size = [4, 4],
strides = 2,
padding = 'same',
activation = tf.nn.relu)
#assert(conv2.shape[1:4] == [11, 11, 32])
# flatten tensor into a batch of vectors
# input tensor shape: [batch_size, 11, 11, 32]
# output tensor shape: [batch_size, 11 * 11 * 32]
conv2_flat = tf.layers.flatten(conv2)
# input tensor shape: [batch_size, 11 * 11 * 32]
# output tensor shape: [batch_size, 256]
dense = tf.layers.dense(
inputs = conv2_flat,
units = 256,
activation = tf.nn.relu)
assert(dense.shape[1] == 256)
# input tensor shape: [batch_size, 256]
# output tensor shape: [batch_size, num_actions]
self.out_actions = tf.layers.dense(
inputs = dense,
units = NUM_ACTIONS,
activation = tf.nn.softmax)
# input tensor shape: [batch_size, 256]
# output tensor shape: [batch_size, 1]
self.out_value = tf.layers.dense(
inputs = dense,
units = 1)
# idk this probably works
log_prob = tf.log( tf.reduce_sum( self.out_actions * self.a_t, axis = 1, keep_dims = True) + 1e-10)
advantage = self.r_t - self.out_value
loss_policy = - log_prob * tf.stop_gradient(advantage)
loss_value = LOSS_V * tf.square(advantage)
entropy = LOSS_ENTROPY * tf.reduce_sum( self.out_actions * tf.log(self.out_actions + 1e-10), axis = 1, keep_dims = True)
loss_total = tf.reduce_mean(loss_policy + loss_value + entropy)
optimizer = tf.train.RMSPropOptimizer(self.learn_rate, decay = RMS_DECAY)
grads, tvars = zip(*optimizer.compute_gradients(loss_total))
clipped_grads, _ = tf.clip_by_global_norm(grads, 40)
self.minimize = optimizer.apply_gradients(zip(clipped_grads, tvars))
def get_learn_rate(self):
if self.num > LEARN_STEPS: return 0
return LEARN_RATE * (1 - float(self.num) / LEARN_STEPS)
def optimize(self):
if len(self.train_queue) < TRAIN_SIZE:
time.sleep(0) # yield
return
with self.lock_queue:
# I don't really understand this tbh
if len(self.train_queue) < TRAIN_SIZE:
return
train_queue = self.train_queue
self.train_queue = []
print("Start training network...{}".format(self.num))
random.shuffle(train_queue) # decrease correlation
print("LENGTH: ", len(train_queue))
print("LEARN RATE: ", self.get_learn_rate())
s, a, r = zip(*train_queue)
s = np.array(s)
a = np.array(a)
r = np.reshape(np.array(r), (-1, 1))
n = len(s)
for i in range(0, n, BATCH_SIZE):
end = min(n, i + BATCH_SIZE)
print("Training {} to {}".format(i, end))
self.session.run(self.minimize, feed_dict = {self.s_t: s[i:end], self.a_t: a[i:end], self.r_t: r[i:end], self.learn_rate: self.get_learn_rate()})
self.save_count -= 1
if self.save_count < 0:
self.save_graph()
self.save_count = SAVE_FREQ
print("Finished training network!")
def train_push(self, s, a, r):
# don't push in too many samples
# this does mean that there are inefficiencies here
with self.lock_queue:
if len(self.train_queue) >= TRAIN_SIZE: return
self.train_queue.append((s, a, r))
self.num += 1
#print(self.num)
def predict(self, s):
return self.session.run([self.out_actions, self.out_value], feed_dict = {self.s_t: s})
def predict_p(self, s):
return self.session.run(self.out_actions, feed_dict = {self.s_t: s})
def predict_v(self, s):
return self.session.run(self.out_value, feed_dict = {self.s_t: s})
class Agent:
def __init__(self, eps_start, eps_end, eps_steps, frames):
self.eps_start = eps_start
self.eps_end = eps_end
self.eps_steps = eps_steps
self.memory = []
self.t_start = 0
self.frames = frames
print("Starting frames: ", frames)
def get_eps(self):
if self.frames >= self.eps_steps:
return self.eps_end
else:
return self.eps_start + self.frames * (self.eps_end - self.eps_start) / self.eps_steps
def act(self, s):
eps = self.get_eps()
if random.random() < eps:
return random.randint(0, NUM_ACTIONS - 1)
else:
p = brain.predict_p(np.array([s]))[0]
#a = np.argmax(p) # hard decision
a = np.random.choice(NUM_ACTIONS, p = p) # soft decision
return a
def train(self, s, a, r, s_, done):
self.frames += 1
a_onehot = np.zeros(NUM_ACTIONS)
a_onehot[a] = 1
if done or self.frames >= self.t_start + T_MAX:
R = 0
if not done:
R = brain.predict_v(np.array([s]))[0]
for mem in reversed(self.memory):
R = mem[2] + GAMMA * R
brain.train_push(mem[0], mem[1], R)
self.memory = []
self.t_start = self.frames + 1
else:
self.memory.append( (s, a_onehot, r) )
from scipy.misc import imresize
def pipeline(image, new_HW=(80, 80), height_range=(35, 193), bg=(144, 72, 17)):
"""Returns a preprocessed image
(1) Crop image (top and bottom)
(2) Remove background & grayscale
(3) Reszie to smaller image
Args:
image (3-D array): (H, W, C)
new_HW (tuple): New image size (height, width)
height_range (tuple): Height range (H_begin, H_end) else cropped
bg (tuple): Background RGB Color (R, G, B)
Returns:
image (3-D array): (H, W, 1)
"""
image = crop_image(image, height_range)
image = resize_image(image, new_HW)
image = kill_background_grayscale(image, bg)
image = np.expand_dims(image, axis=2)
return image
def resize_image(image, new_HW):
"""Returns a resized image
Args:
image (3-D array): Numpy array (H, W, C)
new_HW (tuple): Target size (height, width)
Returns:
image (3-D array): Resized image (height, width, C)
"""
return imresize(image, new_HW, interp="nearest")
def crop_image(image, height_range=(35, 195)):
"""Crops top and bottom
Args:
image (3-D array): Numpy image (H, W, C)
height_range (tuple): Height range between (min_height, max_height)
will be kept
Returns:
image (3-D array): Numpy image (max_H - min_H, W, C)
"""
h_beg, h_end = height_range
return image[h_beg:h_end, ...]
def kill_background_grayscale(image, bg):
"""Make the background 0
Args:
image (3-D array): Numpy array (H, W, C)
bg (tuple): RGB code of background (R, G, B)
Returns:
image (2-D array): Binarized image of shape (H, W)
The background is 0 and everything else is 1
"""
H, W, _ = image.shape
R = image[..., 0]
G = image[..., 1]
B = image[..., 2]
cond = (R == bg[0]) & (G == bg[1]) & (B == bg[2])
image = np.zeros((H, W))
image[~cond] = 1
return image
class Environment(threading.Thread):
def __init__(self, render = False, eps_start = EPS_START, eps_end = EPS_STOP, eps_steps = EPS_STEPS, frames = 0):
threading.Thread.__init__(self)
self.stop_signal = False
self.render = render
self.env = gym.make(ENV)
self.agent = Agent(eps_start, eps_end, eps_steps, frames)
self.phi = np.zeros([80, 80, 4])
self.s_prev = np.zeros([210, 160, 3])
self.R_list = [] # for plotting
def process_image(self, s, s_prev):
"""
Processes image by converting from [210, 160, 3] -> [84, 84]
skimage just does all this lol
thanks random github guy
"""
s = np.maximum(s, s_prev)
res = pipeline(s)[:, :, 0]
return res
def update_phi(self, s):
"""
Updates phi with new observation.
Since phi only stores the last 4 observations,
we rollback phi and insert s (like a queue).
"""
s_new = np.reshape(self.process_image(s, self.s_prev), (80, 80, 1))
self.phi = np.concatenate([self.phi[:, :, 1:], s_new], axis = 2)
self.s_prev = s
def run_episode(self):
self.phi = np.zeros([80, 80, 4])
s = self.env.reset()
self.update_phi(s)
R = 0
while True:
time.sleep(THREAD_DELAY) # yield
a = self.agent.act(self.phi)
for i in range(FRAME_SKIP): # perform a for FRAME_SKIP times
s_, r, done, info = self.env.step(a)
phi_bef = self.phi
self.update_phi(s_)
if self.render:
self.env.render()
else:
self.agent.train(phi_bef, a, r, self.phi, done)
R += r
if done or self.stop_signal:
break
if done or self.stop_signal:
break
print("Total R:", R)
if self.render:
self.R_list.append(R)
def run(self):
while not self.stop_signal:
self.run_episode()
def stop(self):
self.stop_signal = True
class Optimizer(threading.Thread):
stop_signal = False
def __init__(self):
threading.Thread.__init__(self)
def run(self):
while not self.stop_signal:
brain.optimize()
def stop(self):
self.stop_signal = True
def main(unused_argv):
env_test = Environment(render = True, eps_start = 0, eps_end = 0)
global NUM_ACTIONS
NUM_ACTIONS = env_test.env.action_space.n
global brain
brain = Brain()
frames = 0 # starting frames
if os.path.isdir(SAVE_DIR):
ckpt = tf.train.latest_checkpoint(SAVE_DIR)
frames = int(ckpt[len(SAVE_PARAM_PATH) + 1:]) / THREADS # get number of latest checkpoint
envs = [Environment(eps_end = np.random.choice(EPS_STOP_LIST, p = EPS_STOP_DIST), frames = frames) for i in range(THREADS)]
opts = [Optimizer() for i in range(OPTIMIZERS)]
# we run all of these guys in parallel
if RUN_TRAIN:
for o in opts: o.start()
for e in envs: e.start()
if SHOW_ENV_TEST: env_test.start()
while True:
a = input()
if a == 'quit':
break
if RUN_TRAIN:
for e in envs: e.stop()
for e in envs: e.join()
for o in opts: o.stop()
for o in opts: o.join()
if SHOW_ENV_TEST:
env_test.stop()
env_test.join()
print("Training finished")
'''
with open('R_data', 'wb') as f:
pickle.dump(env_test.R_list, f)
'''
'''
plt.plot(env_test.R_list)
plt.ylabel("Episodic reward")
plt.xlabel("Episode number")
plt.title("Performance on Pong")
plt.show()
'''
if __name__ == '__main__':
tf.app.run()