- Python 3.5+
- Linux, Windows or macOS
- mxnet (>=1.4)
While not required, for optimal performance(especially for the detector) it is highly recommended to run the code using a CUDA enabled GPU.
- Prepare an usb camera or some videos
- [Optional] More Accurate Face Alignment
- Download Hourglass2(d=3)-CAB pre-trained model
- Replace
MobileAlignmentorModel
withCabAlignmentorModel
python3 video_gaze_test.py
- Edit
MxnetDetectionModel
'sscale
parameter to make a suitable input size of face detector - More details at Wiki
- Try with Open Vtuber
- RetinaFace: Single-stage Dense Face Localisation in the Wild
- faster-mobile-retinaface (MobileNet Backbone)
- MobileNet-v2 version (1.4MB, using by default)
- Hourglass2(d=3)-CAB version (37MB)
@article{wang2019realtime,
title={Realtime and Accurate 3D Eye Gaze Capture with DCNN-based Iris and Pupil Segmentation},
author={Wang, Zhiyong and Chai, Jinxiang and Xia, Shihong},
journal={IEEE transactions on visualization and computer graphics},
year={2019},
publisher={IEEE}
}
@inproceedings{deng2019retinaface,
title={RetinaFace: Single-stage Dense Face Localisation in the Wild},
author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos},
booktitle={arxiv},
year={2019}
}