Official PyTorch implementation of "GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps" (AAAI'23, Oral) (paper)
To install requirements:
pip install -r requirements.txt
Install pairing Algorithm:
python setup.py build_ext --inplace
We provide the code for training the neural network above general classification datasets from PuzzleMix.
- To reproduce Guided-SR with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18 --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup --guided True --condition greedy --mix_prob 0.5 --guided_type sr
- To reproduce Guided-AP with PreActResNet18 for 1200 epochs, run:
python main.py --dataset cifar100 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18 --learning_rate 0.1 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 400 800 --gammas 0.1 0.1 --train mixup --guided True --condition greedy --mix_prob 0.8 --guided_type ap
- To reproduce Guided-SR with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup --guided True --condition greedy --mix_prob 0.5 --guided_type sr
- To reproduce Guided-AP with PreActResNet18 for 1200 epochs, run:
python main.py --dataset tiny-imagenet-200 --data_dir [data_path] --root_dir [save_path] --labels_per_class 500 --arch preactresnet18 --learning_rate 0.2 --momentum 0.9 --decay 0.0001 --epochs 1200 --schedule 600 900 --gammas 0.1 0.1 --train mixup --guided True --condition greedy --mix_prob 0.8 --guided_type ap --clean_lam 1.0
@inproceedings{kang2023guidedmixup,
title={GuidedMixup: an efficient mixup strategy guided by saliency maps},
author={Kang, Minsoo and Kim, Suhyun},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={1},
pages={1096--1104},
year={2023}
}