Skip to content

6Naci/data-archive-for-equation-discovery-and-recovery

Repository files navigation

Data archive for equation discovery and recovery

Archive of data used to explore differential equation discovery approaches.

Notes

Each folder contains data and explanatory documents. The title also contains an abbreviation for the data source. Synthetic data - s_d, Real data - r_d.


Examples

1. Wave equation with one spatial variable $$\frac{\partial^{2} u}{\partial t^{2}} - \frac{1}{25} \frac{\partial^{2} u}{\partial x^{2}} = 0,$$ $$\\ 100\times100, x \in [0; 1], t \in [0; 1].$$ $$\\ bc = \{u(0, t) = 0, u(1, t) = 0\}, \\ \\ ic = \{u(x, 0) = 10000 \sin (\frac{1}{10}\cdot x \cdot (x-1))^2\}$$
2. Burgers' equation $$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0,$$ $$\\ 256\times256, x \in [-4000; 4000], t \in [0; 4].$$
3. Burgers' equation (reduced grid) $$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0,$$ $$\\ 100 \times100, x \in [-1000; 0], t \in [0; 1].$$
4. Lotka-Volterra equations $$\begin{equation*} \begin{cases} \frac{\partial u}{\partial t} = \normalsize 0.55 \cdot u - 0.028 \cdot u \cdot v, \\\ \frac{\partial v}{\partial t} = \normalsize - 0.84 \cdot v + 0.026 \cdot u \cdot v. \end{cases} \end{equation*}$$ $$\\ t \in [0, 20], \\ u_0, \ v_0 = 30, 4.$$
5. Pendulum equations $$\begin{equation} \begin{gathered} \begin{cases} \dot\sigma = z, \\\ \dot z = -\frac{1}{\sqrt{5}} z -\sin(\sigma) + 0.2 \quad \end{cases} \end{gathered} \end{equation}$$ $$\\ t \in [0, 20], \\ \sigma_0, \ z_0 = \frac{\pi}{2}, 0.5.$$

Algorithms under research:


About

The data archive for the model examples.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published