Skip to content

86sanj/datasetinsights

 
 

Repository files navigation

Dataset Insights

Unity Dataset Insights is a python package for downloading, parsing and analyzing synthetic datasets generated using the Unity Perception package.

Installation

Dataset Insights maintains a pip package for easy installation. It can work in any standard Python environment using pip install datasetinsights command. We support Python 3 (3.7 and 3.8).

Getting Started

Dataset Statistics

We provide a sample notebook to help you load synthetic datasets generated using Perception package and visualize dataset statistics. We plan to support other sample Unity projects in the future.

Dataset Download

You can download the datasets from HTTP(s), GCS, and Unity simulation projects using the 'download' command from CLI or API.

CLI

datasetinsights download \
  --source-uri=<xxx> \
  --output=$HOME/data

Programmatically

from datasetinsights.io.downloader import UnitySimulationDownloader,
GCSDatasetDownloader, HTTPDatasetDownloader

downloader = UnitySimulationDownloader(access_token=access_token)
downloader.download(source_uri=source_uri, output=data_root)

downloader = GCSDatasetDownloader()
downloader.download(source_uri=source_uri, output=data_root)

downloader = HTTPDatasetDownloader()
downloader.download(source_uri=source_uri, output=data_root)

Docker

You can use the pre-build docker image unitytechnologies/datasetinsights to run similar commands.

Documentation

You can find the API documentation on readthedocs.

Contributing

Please let us know if you encounter a bug by filing an issue. To learn more about making a contribution to Dataset Insights, please see our Contribution page.

License

Dataset Insights is licensed under the Apache License, Version 2.0. See LICENSE for the full license text.

Citation

If you find this package useful, consider citing it using:

@misc{datasetinsights2020,
    title={Unity {D}ataset {I}nsights Package},
    author={{Unity Technologies}},
    howpublished={\url{https://github.com/Unity-Technologies/datasetinsights}},
    year={2020}
}

About

Synthetic Dataset Insights

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 86.9%
  • Jupyter Notebook 6.1%
  • CSS 5.3%
  • Other 1.7%