This repository contains the material for the M.Sc. course "Hardware Architecture for Embedded and Edge AI" - Politecnico di Milano - 2022-2023
Lecturer: Prof. Manuel Roveri
Exercise session: Massimo Pavan
- Lectures:
- 01 - Intro to the course (video)
- 02 - Embedded and Edge Hardware (video)
- 03 - Algorithms for Embedded and Edge AI (video1, video2)
- 04 - Machine Learning for Embedded and Edge AI (video1, video2)
- 05 - Deep learning for EEAI (video)
- 06 - Architectures for EEAI (video)
- 07 - Approximate Computing for EEAI (video1, video2)
- 08 - Early Exit Neural Networks (video)
- 09 - Learning in presence of concept drift (video)
- 10 - Deep Learning for IoT (video)
- Exercise session:
- Ex. 01 - Platform and firmware (video)
- Ex. 02 - Tensorflow and CNNs (video)
- Ex. 03 - Data collection with Edge Impulse
- Ex. 04 - TinyML and TFL4M (video)
- Ex. 05 - Keyword Spotting Training (video)
- Ex. 06 - Deploying Keyword Spotting (video)
- Ex. 07 - Train and Deploy VWW (video)
- Ex. 08 - Deployment Options (video)
- Ex. 09 - Anomaly Detection with IMUs (video)
- Seminars: