This is the official code implementation of the "ICIP 2022" paper "GPU-accelerated SIFT-aided source identification of stabilized videos"
- Download the python libraries of Camera-fingerprint ;
- if Camera-fingerprint is not already, reorganize the folders such that
PRNU/CameraFingerprint
; - Download the Reference Camera Fingerprints here;
- at least 9G GPU.
conda env create -f environment.yml
Download Vision dataset here.
nohup python -u main_H1.py --videos PATH_TO_VIDEOS --fingerprint PATH_TO_FINGERPRINTS --output PATH_TO_OUTPUT_FOLDER --gpu_dev /gpu:N >| output_H1.log &
nohup python -u main_H0.py --videos PATH_TO_VIDEOS --fingerprint PATH_TO_FINGERPRINTS --output PATH_TO_OUTPUT_FOLDER --gpu_dev /gpu:N >| output_H0.log &
Edit and Run bash runner.sh
You need to edit:
PATH_TO_VIDEOS
changing it with the path to your datasetPATH_TO_FINGERPRINTS
changing it with the path to your reference camera fingerprintsPATH_TO_OUTPUT_FOLDER
changing it with the path to your output folderN
chaging it with your GPU ID
Check "GPU-accelerated SIFT-aided source identification of stabilized videos"
If you use this material please cite:
@inproceedings{montibeller2022gpu,
title={GPU-accelerated SIFT-aided source identification of stabilized videos},
author={Montibeller, Andrea and Pasquini, Cecilia and Boato, Giulia and Dell’Anna, Stefano and P{'e}rez-Gonz{'a}lez, Fernando},
booktitle={2022 IEEE International Conference on Image Processing (ICIP)},
pages={2616--2620},
year={2022},
organization={IEEE}
}