Skip to content

Implementation of the ICIP paper "GPU-ACCELERATED SIFT-AIDED SOURCE IDENTIFICATION OF STABILIZED VIDEOS"

License

Notifications You must be signed in to change notification settings

AMontiB/GPU-PRNU-SIFT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GPU-accelerated SIFT-aided source identification of stabilized videos

This is the official code implementation of the "ICIP 2022" paper "GPU-accelerated SIFT-aided source identification of stabilized videos"

Requirements

  • Download the python libraries of Camera-fingerprint ;
  • if Camera-fingerprint is not already, reorganize the folders such that PRNU/CameraFingerprint ;
  • Download the Reference Camera Fingerprints here;
  • at least 9G GPU.

Set up Virtual-Env

conda env create -f environment.yml

VISION DATASET

Download Vision dataset here.

Test

Test a match (H1) hypothesis case

nohup python -u main_H1.py --videos PATH_TO_VIDEOS --fingerprint PATH_TO_FINGERPRINTS --output PATH_TO_OUTPUT_FOLDER --gpu_dev /gpu:N >| output_H1.log & 

Test a mis-match (H0) hypothesis case

nohup python -u main_H0.py --videos PATH_TO_VIDEOS --fingerprint PATH_TO_FINGERPRINTS --output PATH_TO_OUTPUT_FOLDER --gpu_dev /gpu:N >| output_H0.log & 

Run both

Edit and Run bash runner.sh

NOTE:

You need to edit:

  • PATH_TO_VIDEOS changing it with the path to your dataset
  • PATH_TO_FINGERPRINTS changing it with the path to your reference camera fingerprints
  • PATH_TO_OUTPUT_FOLDER changing it with the path to your output folder
  • N chaging it with your GPU ID

Results of the Paper

Check "GPU-accelerated SIFT-aided source identification of stabilized videos"

tables

Cite Us

If you use this material please cite:

@inproceedings{montibeller2022gpu,
title={GPU-accelerated SIFT-aided source identification of stabilized videos},
author={Montibeller, Andrea and Pasquini, Cecilia and Boato, Giulia and Dell’Anna, Stefano and P{'e}rez-Gonz{'a}lez, Fernando},
booktitle={2022 IEEE International Conference on Image Processing (ICIP)},
pages={2616--2620},
year={2022},
organization={IEEE}
}

About

Implementation of the ICIP paper "GPU-ACCELERATED SIFT-AIDED SOURCE IDENTIFICATION OF STABILIZED VIDEOS"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published