Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

STM32F7 update drivers version to CUBE V1.15.0 #11711

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
364 changes: 364 additions & 0 deletions features/mbedtls/targets/TARGET_STM/TARGET_STM32F4/aes_alt.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,364 @@
/*
* Hardware aes implementation for STM32F4 STM32F7 and STM32L4 families
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would a newer version of this aes_alt.c file work for both TARGET_STM32F4 and TARGET_STM32L4? It seems silly to have two different nearly identical copies of the same file in different places in the Mbed OS tree. I'd prefer we use ifdefs to handle the minor differences between these targets as needed. Same goes for other files added by this PR that are nearly the same as existing files.

Also, please ensure it is very clear which version of the ST SDK these files are from, for easier maintenance.

*******************************************************************************
* Copyright (c) 2017, STMicroelectronics
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/

#include <string.h>
#include "mbedtls/aes.h"

#if defined(MBEDTLS_AES_ALT)

static int aes_set_key(mbedtls_aes_context *ctx, const unsigned char *key, unsigned int keybits)
{
switch (keybits) {
case 128:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_128B;
memcpy(ctx->aes_key, key, 16);
break;
case 192:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_192B;
memcpy(ctx->aes_key, key, 24);
break;
case 256:
ctx->hcryp_aes.Init.KeySize = CRYP_KEYSIZE_256B;
memcpy(ctx->aes_key, key, 32);
break;
default :
return (MBEDTLS_ERR_AES_INVALID_KEY_LENGTH);
}

ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Instance = CRYP;

/* Deinitializes the CRYP peripheral */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) == HAL_ERROR) {
return (HAL_ERROR);
}

/* Enable CRYP clock */
__HAL_RCC_CRYP_CLK_ENABLE();

ctx->hcryp_aes.Init.pKey = ctx->aes_key;
if (HAL_CRYP_Init(&ctx->hcryp_aes) == HAL_ERROR) {
return (HAL_ERROR);
}

/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
return (0);

}

/* Implementation that should never be optimized out by the compiler */
static void mbedtls_zeroize(void *v, size_t n)
{
volatile unsigned char *p = (unsigned char *)v;
while (n--) {
*p++ = 0;
}
}


void mbedtls_aes_init(mbedtls_aes_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_aes_context));

}


void mbedtls_aes_free(mbedtls_aes_context *ctx)
{
if (ctx == NULL) {
return;
}
#if defined(DUAL_CORE)
uint32_t timeout = HSEM_TIMEOUT;
while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID) && (--timeout != 0)) {
}
#endif /* DUAL_CORE */
/* Force the CRYP Periheral Clock Reset */
__HAL_RCC_CRYP_FORCE_RESET();

/* Release the CRYP Periheral Clock Reset */
__HAL_RCC_CRYP_RELEASE_RESET();
#if defined(DUAL_CORE)
LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
#endif /* DUAL_CORE */

mbedtls_zeroize(ctx, sizeof(mbedtls_aes_context));
}


int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits)
{
int ret_val = 0;
ret_val = aes_set_key(ctx, key, keybits);
return (ret_val);
}

int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits)
{
int ret_val = 0;
ret_val = aes_set_key(ctx, key, keybits);
return (ret_val);
}


int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{

/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
ctx->hcryp_aes.Phase = HAL_CRYP_PHASE_READY;
ctx->hcryp_aes.Init.DataType = CRYP_DATATYPE_8B;
ctx->hcryp_aes.Init.pKey = ctx->aes_key;

if (mode == MBEDTLS_AES_DECRYPT) { /* AES decryption */
if (mbedtls_internal_aes_decrypt(ctx, input, output)) {
return ST_ERR_AES_BUSY;
}
} else { /* AES encryption */
if (mbedtls_internal_aes_encrypt(ctx, input, output)) {
return ST_ERR_AES_BUSY;
}
}
/* allow multi-instance of CRYP use: save context for CRYP HW module CR */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;

return (0);
}

#if defined(MBEDTLS_CIPHER_MODE_CBC)
static int st_cbc_restore_context(mbedtls_aes_context *ctx)
{
/* allow multi-instance of CRYP use: restore context for CRYP hw module */
ctx->hcryp_aes.Instance->CR = ctx->ctx_save_cr;
/* Re-initialize AES processor with proper parameters
and (re-)apply key and IV for multi context usecases */
if (HAL_CRYP_DeInit(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
if (HAL_CRYP_Init(&ctx->hcryp_aes) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
return 0;
}

int mbedtls_aes_crypt_cbc(mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
uint32_t tickstart;
uint32_t *iv_ptr = (uint32_t *)&iv[0];
if (length % 16) {
return (MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH);
}
ctx->hcryp_aes.Init.pInitVect = &iv[0];
if (st_cbc_restore_context(ctx) != 0) {
return (ST_ERR_AES_BUSY);
}

if (mode == MBEDTLS_AES_DECRYPT) {
if (HAL_CRYP_AESCBC_Decrypt(&ctx->hcryp_aes, (uint8_t *)input, length, (uint8_t *)output, 10) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
/* Save the internal IV vector for multi context purpose */
tickstart = HAL_GetTick();
while ((ctx->hcryp_aes.Instance->SR & (CRYP_SR_IFEM | CRYP_SR_OFNE | CRYP_SR_BUSY)) != CRYP_SR_IFEM) {
if ((HAL_GetTick() - tickstart) > ST_AES_TIMEOUT) {
return ST_ERR_AES_BUSY; // timeout: CRYP processor is busy
}
}
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR; // save here before overwritten
ctx->hcryp_aes.Instance->CR &= ~CRYP_CR_CRYPEN;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0LR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV0RR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1LR;
*iv_ptr++ = ctx->hcryp_aes.Instance->IV1RR;
} else {
if (HAL_CRYP_AESCBC_Encrypt(&ctx->hcryp_aes, (uint8_t *)input, length, (uint8_t *)output, 10) != HAL_OK) {
return ST_ERR_AES_BUSY;
}
memcpy(iv, output, 16); /* current output is the IV vector for the next call */
ctx->ctx_save_cr = ctx->hcryp_aes.Instance->CR;
}

return 0;
}
#endif /* MBEDTLS_CIPHER_MODE_CBC */

#if defined(MBEDTLS_CIPHER_MODE_CFB)
int mbedtls_aes_crypt_cfb128(mbedtls_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
int c;
size_t n = *iv_off;

if (mode == MBEDTLS_AES_DECRYPT) {
while (length--) {
if (n == 0)
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}

c = *input++;
*output++ = (unsigned char)(c ^ iv[n]);
iv[n] = (unsigned char) c;

n = (n + 1) & 0x0F;
}
} else {
while (length--) {
if (n == 0)
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}

iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);

n = (n + 1) & 0x0F;
}
}

*iv_off = n;

return (0);
}


int mbedtls_aes_crypt_cfb8(mbedtls_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output)
{
unsigned char c;
unsigned char ov[17];

while (length--) {
memcpy(ov, iv, 16);
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv) != 0) {
return ST_ERR_AES_BUSY;
}

if (mode == MBEDTLS_AES_DECRYPT) {
ov[16] = *input;
}

c = *output++ = (unsigned char)(iv[0] ^ *input++);

if (mode == MBEDTLS_AES_ENCRYPT) {
ov[16] = c;
}

memcpy(iv, ov + 1, 16);
}

return (0);
}

#endif /*MBEDTLS_CIPHER_MODE_CFB */

#if defined(MBEDTLS_CIPHER_MODE_CTR)
int mbedtls_aes_crypt_ctr(mbedtls_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output)
{
int c, i;
size_t n = *nc_off;

while (length--) {
if (n == 0) {
if (mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block) != 0) {
return ST_ERR_AES_BUSY;
}

for (i = 16; i > 0; i--)
if (++nonce_counter[i - 1] != 0) {
break;
}
}
c = *input++;
*output++ = (unsigned char)(c ^ stream_block[n]);

n = (n + 1) & 0x0F;
}

*nc_off = n;

return (0);
}
#endif /* MBEDTLS_CIPHER_MODE_CTR */

int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
if (HAL_CRYP_AESECB_Encrypt(&ctx->hcryp_aes, (uint8_t *)input, 16, (uint8_t *)output, 10) != HAL_OK) {
// error found
return ST_ERR_AES_BUSY;
}
return 0;

}

int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
if (HAL_CRYP_AESECB_Decrypt(&ctx->hcryp_aes, (uint8_t *)input, 16, (uint8_t *)output, 10) != HAL_OK) {
// error found
return ST_ERR_AES_BUSY;
}
return 0;
}

#if !defined(MBEDTLS_DEPRECATED_REMOVED)
void mbedtls_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
mbedtls_internal_aes_encrypt(ctx, input, output);
}

void mbedtls_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
mbedtls_internal_aes_decrypt(ctx, input, output);
}
#endif /* MBEDTLS_DEPRECATED_REMOVED */
#endif /*MBEDTLS_AES_ALT*/
Loading