Skip to content

Commit

Permalink
Select link correctness fix (#447)
Browse files Browse the repository at this point in the history
* Revert "Disable select link (#443)"

This reverts commit 0cd3d48.

* Add Kai Tang's test and data

* Potential select link fix

* Test formatting

* Fix tests imports

* Add select link test

This test asserts that the results of the select link on the links 7, and 13 are the same as the results of the
assignment. These links were chosen for this particular network to cover all paths used.

* Prevent data races in select link results

Memory for the multi-threaded runs are now allocated in MuliThreadedAoN along side the rest of the multi-threaded memory.

* Installs package to run documentation pipeline

* installing

* Install pandoc

---------

Co-authored-by: Pedro Camargo <c@margo.co>
  • Loading branch information
Jake-Moss and pedrocamargo authored Sep 29, 2023
1 parent 039fee7 commit 477f397
Show file tree
Hide file tree
Showing 10 changed files with 129 additions and 74 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/documentation.yml
Original file line number Diff line number Diff line change
Expand Up @@ -29,12 +29,13 @@ jobs:
pip install -r docs/requirements-docs.txt
python -m pip install sphinx-gallery --user
sudo apt update
sudo apt install -y --fix-missing libsqlite3-mod-spatialite libspatialite-dev
sudo apt install -y --fix-missing libsqlite3-mod-spatialite libspatialite-dev pandoc
sudo ln -s /usr/lib/x86_64-linux-gnu/mod_spatialite.so /usr/lib/x86_64-linux-gnu/mod_spatialite
- name: Compile library
run: |
python setup.py build_ext --inplace
pip install .
- name: Check history of versions
run: |
Expand Down
7 changes: 3 additions & 4 deletions aequilibrae/paths/AoN.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -97,11 +97,10 @@ def one_to_all(origin, matrix, graph, result, aux_result, curr_thread):
bint select_link = False

if result._selected_links:

has_flow_mask = aux_result.has_flow_mask[curr_thread, :]
sl_od_matrix_view = aux_result.temp_sl_od_matrix[:, origin_index, :, :]
sl_link_loading_view = aux_result.temp_sl_link_loading[:, :, :]
link_list = aux_result.select_links[:, :]
sl_od_matrix_view = aux_result.temp_sl_od_matrix[curr_thread, :, origin_index, :, :]
sl_link_loading_view = aux_result.temp_sl_link_loading[curr_thread, :, :, :]
link_list = aux_result.select_links[:, :] # Read only, don't need to slice on curr_thread
select_link = True
#Now we do all procedures with NO GIL
with nogil:
Expand Down
10 changes: 6 additions & 4 deletions aequilibrae/paths/linear_approximation.py
Original file line number Diff line number Diff line change
Expand Up @@ -412,12 +412,14 @@ def execute(self):
# The temp has an index associated with the link_set name
copy_three_dimensions(
c.results.select_link_od.matrix[name], # matrix being written into
c._aon_results.temp_sl_od_matrix[idx, :, :, :], # results after the iteration
np.sum(aon.aux_res.temp_sl_od_matrix, axis=0)[
idx, :, :, :
], # results after the iteration
self.cores, # core count
)
copy_two_dimensions(
c.results.select_link_loading[name], # ouput matrix
c._aon_results.temp_sl_link_loading[idx, :, :], # matrix 1
np.sum(aon.aux_res.temp_sl_link_loading, axis=0)[idx, :, :], # matrix 1
self.cores, # core count
)
flows.append(c.results.total_link_loads)
Expand Down Expand Up @@ -447,15 +449,15 @@ def execute(self):
# The temp flows have an index associated with the link_set name
linear_combination_skims(
c.results.select_link_od.matrix[name], # output matrix
c._aon_results.temp_sl_od_matrix[idx, :, :, :], # matrix 1
np.sum(aon.aux_res.temp_sl_od_matrix, axis=0)[idx, :, :, :], # matrix 1
c.results.select_link_od.matrix[name], # matrix 2 (previous iteration)
self.stepsize, # stepsize
self.cores, # core count
)

linear_combination(
c.results.select_link_loading[name], # output matrix
c._aon_results.temp_sl_link_loading[idx, :, :], # matrix 1
np.sum(aon.aux_res.temp_sl_link_loading, axis=0)[idx, :, :], # matrix 1
c.results.select_link_loading[name], # matrix 2 (previous iteration)
self.stepsize, # stepsize
self.cores, # core count
Expand Down
16 changes: 14 additions & 2 deletions aequilibrae/paths/multi_threaded_aon.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,20 @@ def prepare(self, graph, results):
self.has_flow_mask = np.zeros((results.cores, graph.compact_num_links), dtype=bool)
# Copying the select link matrices from results
self.select_links = results.select_links
self.temp_sl_od_matrix = results.temp_sl_od_matrix
self.temp_sl_link_loading = results.temp_sl_link_loading
self.temp_sl_od_matrix = np.zeros(
(
results.cores,
len(results._selected_links),
graph.num_zones,
graph.num_zones,
results.classes["number"],
),
dtype=graph.default_types("float"),
)
self.temp_sl_link_loading = np.zeros(
(results.cores, len(results._selected_links), graph.compact_num_links, results.classes["number"]),
dtype=graph.default_types("float"),
)

if results.num_skims > 0:
self.temporary_skims = np.zeros((results.cores, results.compact_nodes, results.num_skims), dtype=ftype)
Expand Down
25 changes: 11 additions & 14 deletions aequilibrae/paths/results/assignment_results.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@ def prepare(self, graph: Graph, matrix: AequilibraeMatrix) -> None:
self.crosswalk = np.zeros(graph.graph.shape[0], self.__integer_type)
self.crosswalk[graph.graph.__supernet_id__.values] = graph.graph.__compressed_id__.values
self.__graph_ids = graph.graph.__supernet_id__.values
self.__graph_compressed_ids = graph.graph.__compressed_id__.values
self.__redim()
self.__graph_id__ = graph.__id__

Expand All @@ -130,16 +131,6 @@ def prepare(self, graph: Graph, matrix: AequilibraeMatrix) -> None:
-1,
dtype=graph.default_types("int"),
)
# 4d dimensions: link_set, origins, destinations, subclass
self.temp_sl_od_matrix = np.zeros(
(len(self._selected_links), graph.num_zones, graph.num_zones, self.classes["number"]),
dtype=graph.default_types("float"),
)
# 3d dimensions: link_set, link_id, subclass
self.temp_sl_link_loading = np.zeros(
(len(self._selected_links), graph.compact_num_links, self.classes["number"]),
dtype=graph.default_types("float"),
)

sl_idx = {}
for i, val in enumerate(self._selected_links.items()):
Expand All @@ -150,8 +141,14 @@ def prepare(self, graph: Graph, matrix: AequilibraeMatrix) -> None:
# Multidimensional arrays where each row has different lengths
self.select_links[i][: len(arr)] = arr
# Correctly sets the dimensions for the final output matrices
self.select_link_od.matrix[name] = self.temp_sl_od_matrix[i]
self.select_link_loading[name] = self.temp_sl_link_loading[i]
self.select_link_od.matrix[name] = np.zeros(
(graph.num_zones, graph.num_zones, self.classes["number"]),
dtype=graph.default_types("float"),
)
self.select_link_loading[name] = np.zeros(
(graph.compact_num_links, self.classes["number"]),
dtype=graph.default_types("float"),
)

# Overwrites previous arrays on assignment results level with the index to access that array in Cython
self._selected_links = sl_idx
Expand Down Expand Up @@ -277,7 +274,6 @@ def get_load_results(self) -> AequilibraeData:
def get_sl_results(self) -> AequilibraeData:
# Set up the name for each column. Each set of select links has a column for ab, ba, total flows
# for each subclass contained in the TrafficClass
raise NotImplementedError("Select link is currently disabled. See issue #442")
fields = [
e
for name in self._selected_links.keys()
Expand All @@ -299,7 +295,7 @@ def get_sl_results(self) -> AequilibraeData:
# Link flows initialised
link_flows = np.full((self.links, self.classes["number"]), np.nan)
# maps link flows from the compressed graph to the uncompressed graph
assign_link_loads(link_flows, self.select_link_loading[name], self.crosswalk, self.cores)
assign_link_loads(link_flows, self.select_link_loading[name], self.__graph_compressed_ids, self.cores)
for i, n in enumerate(self.classes["names"]):
# Directional Flows
res.data[name + "_" + n + "_ab"][m.network_ab_idx] = np.nan_to_num(link_flows[m.graph_ab_idx, i])
Expand All @@ -309,6 +305,7 @@ def get_sl_results(self) -> AequilibraeData:
res.data[name + "_" + n + "_tot"] = np.nan_to_num(res.data[name + "_" + n + "_ab"]) + np.nan_to_num(
res.data[name + "_" + n + "_ba"]
)

return res

def save_to_disk(self, file_name=None, output="loads") -> None:
Expand Down
6 changes: 0 additions & 6 deletions aequilibrae/paths/traffic_assignment.py
Original file line number Diff line number Diff line change
Expand Up @@ -687,8 +687,6 @@ def select_link_flows(self) -> Dict[str, pd.DataFrame]:
"""
Returns a dataframe of the select link flows for each class
"""

raise NotImplementedError("Select link is currently disabled. See issue #442")
class_flows = [] # stores the df for each class
for cls in self.classes:
# Save OD_matrices
Expand All @@ -715,7 +713,6 @@ def save_select_link_flows(self, table_name: str, project=None) -> None:
Defaults to the active project
"""

raise NotImplementedError("Select link is currently disabled. See issue #442")
if not project:
project = self.project or get_active_project()
df = self.select_link_flows()
Expand Down Expand Up @@ -748,7 +745,6 @@ def save_select_link_matrices(self, file_name: str) -> None:
Saves the Select Link matrices for each TrafficClass in the current TrafficAssignment class
"""

raise NotImplementedError("Select link is currently disabled. See issue #442")
for cls in self.classes:
# Save OD_matrices
if cls._selected_links is None:
Expand All @@ -770,7 +766,5 @@ def save_select_link_results(self, name: str) -> None:
:Arguments:
**name** (:obj:`str`): name of the matrices
"""

raise NotImplementedError("Select link is currently disabled. See issue #442")
self.save_select_link_flows(name)
self.save_select_link_matrices(name)
1 change: 0 additions & 1 deletion aequilibrae/paths/traffic_class.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,6 @@ def set_select_links(self, links: Dict[str, List[Tuple[int, int]]]):
:Arguments:
**links** (:obj:`Union[None, Dict[str, List[Tuple[int, int]]]]`): name of link set and
Link IDs and directions to be used in select link analysis"""
raise NotImplementedError("Select link is currently disabled. See issue #442")
self._selected_links = {}
for name, link_set in links.items():
if len(name.split(" ")) != 1:
Expand Down
76 changes: 38 additions & 38 deletions docs/source/examples/full_workflows/plot_forecasting.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,44 +324,44 @@
assig.max_iter = 500
assig.rgap_target = 0.00001

# #%%
# # **OPTIONAL**

# # If we want to execute select link analysis on a particular TrafficClass, we set the links we are analyzing.
# # The format of the input select links is a dictionary (str: list[tuple]).
# # Each entry represents a separate set of selected links to compute. The str name will name the set of links.
# # The list[tuple] is the list of links being selected, of the form (link_id, direction), as it occurs in the Graph.
# # Direction can be 0, 1, -1. 0 denotes bi-directionality
# # For example, let's use Select Link on two sets of links:

# # %%
# select_links = {
# "Leaving node 1": [(1, 1), (2, 1)],
# "Random nodes": [(3, 1), (5, 1)],
# }
# # We call this command on the class we are analyzing with our dictionary of values
# assigclass.set_select_links(select_links)

# assig.execute() # we then execute the assignment

# # %%
# # Now let us save our select link results, all we need to do is provide it with a name
# # In addition to exporting the select link flows, it also exports the Select Link matrices in OMX format.
# assig.save_select_link_results("select_link_analysis")

# # %%
# # Say we just want to save our select link flows, we can call:
# assig.save_select_link_flows("just_flows")

# # Or if we just want the SL matrices:
# assig.save_select_link_matrices("just_matrices")
# # Internally, the save_select_link_results calls both of these methods at once.

# # We could export it to CSV or AequilibraE data, but let's put it directly into the results database
# assig.save_results("future_year_assignment")

# # And save the skims
# assig.save_skims("future_year_assignment_skims", which_ones="all", format="omx")
#%%
# **OPTIONAL**

# If we want to execute select link analysis on a particular TrafficClass, we set the links we are analyzing.
# The format of the input select links is a dictionary (str: list[tuple]).
# Each entry represents a separate set of selected links to compute. The str name will name the set of links.
# The list[tuple] is the list of links being selected, of the form (link_id, direction), as it occurs in the Graph.
# Direction can be 0, 1, -1. 0 denotes bi-directionality
# For example, let's use Select Link on two sets of links:

# %%
select_links = {
"Leaving node 1": [(1, 1), (2, 1)],
"Random nodes": [(3, 1), (5, 1)],
}
# We call this command on the class we are analyzing with our dictionary of values
assigclass.set_select_links(select_links)

assig.execute() # we then execute the assignment

# %%
# Now let us save our select link results, all we need to do is provide it with a name
# In addition to exporting the select link flows, it also exports the Select Link matrices in OMX format.
assig.save_select_link_results("select_link_analysis")

# %%
# Say we just want to save our select link flows, we can call:
assig.save_select_link_flows("just_flows")

# Or if we just want the SL matrices:
assig.save_select_link_matrices("just_matrices")
# Internally, the save_select_link_results calls both of these methods at once.

# We could export it to CSV or AequilibraE data, but let's put it directly into the results database
assig.save_results("future_year_assignment")

# And save the skims
assig.save_skims("future_year_assignment_skims", which_ones="all", format="omx")

#%%
# We can also plot convergence
Expand Down
59 changes: 55 additions & 4 deletions tests/aequilibrae/paths/test_select_link.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,15 @@
import zipfile
from os.path import join, dirname
from tempfile import gettempdir
from unittest import TestCase, skip

from unittest import TestCase
import pandas as pd
import numpy as np

from aequilibrae import TrafficAssignment, TrafficClass, Graph, Project, PathResults
from aequilibrae.matrix import AequilibraeMatrix
from ...data import siouxfalls_project


@skip("Select link is currently disabled. See issue #442")
class TestSelectLink(TestCase):
def setUp(self) -> None:
os.environ["PATH"] = os.path.join(gettempdir(), "temp_data") + ";" + os.environ["PATH"]
Expand All @@ -38,7 +38,6 @@ def setUp(self) -> None:
self.assignment.set_time_field("free_flow_time")
self.assignment.max_iter = 1
self.assignment.set_algorithm("msa")
self.assignment.set_cores(1)

def tearDown(self) -> None:
self.matrix.close()
Expand Down Expand Up @@ -149,6 +148,58 @@ def test_link_out_of_bounds(self):
self.assignclass = TrafficClass("car", self.car_graph, self.matrix)
self.assertRaises(ValueError, self.assignclass.set_select_links, {"test": [(78, 1), (1, 1)]})

def test_kaitang(self):
proj_path = os.path.join(gettempdir(), "test_traffic_assignment_path_files" + uuid.uuid4().hex)
os.mkdir(proj_path)
zipfile.ZipFile(join(dirname(siouxfalls_project), "KaiTang.zip")).extractall(proj_path)

link_df = pd.read_csv(os.path.join(proj_path, "link.csv"))
centroids_array = np.array([7, 8, 11])

net = link_df.copy()

g = Graph()
g.network = net
g.network_ok = True
g.status = "OK"
g.mode = "a"
g.prepare_graph(centroids_array)
g.set_blocked_centroid_flows(False)
g.set_graph("fft")

aem_mat = AequilibraeMatrix()
aem_mat.load(os.path.join(proj_path, "demand_a.aem"))
aem_mat.computational_view(["a"])

assign_class = TrafficClass("class_a", g, aem_mat)
assign_class.set_fixed_cost("a_toll")
assign_class.set_vot(1.1)
assign_class.set_select_links(links={"trace": [(7, 0), (13, 0)]})

assign = TrafficAssignment()
assign.set_classes([assign_class])
assign.set_vdf("BPR")
assign.set_vdf_parameters({"alpha": "alpha", "beta": "beta"})
assign.set_capacity_field("capacity")
assign.set_time_field("fft")
assign.set_algorithm("bfw")
assign.max_iter = 100
assign.rgap_target = 0.0001

# 4.execute
assign.execute()

# 5.receive results
assign_flow_res_df = assign.results().reset_index(drop=False).fillna(0)
select_link_flow_df = assign.select_link_flows().reset_index(drop=False).fillna(0)

pd.testing.assert_frame_equal(
assign_flow_res_df[["link_id", "a_ab", "a_ba", "a_tot"]],
select_link_flow_df.rename(
columns={"class_a_trace_a_ab": "a_ab", "class_a_trace_a_ba": "a_ba", "class_a_trace_a_tot": "a_tot"}
),
)


def create_od_mask(demand: np.array, graph: Graph, sl):
res = PathResults()
Expand Down
Binary file added tests/data/KaiTang.zip
Binary file not shown.

0 comments on commit 477f397

Please sign in to comment.