Skip to content

Commit

Permalink
update mmdet test configs
Browse files Browse the repository at this point in the history
  • Loading branch information
Alias-z committed Jun 4, 2024
1 parent 6965f84 commit 68ad269
Show file tree
Hide file tree
Showing 24 changed files with 1,390 additions and 1,360 deletions.

Large diffs are not rendered by default.

379 changes: 369 additions & 10 deletions tests/data/models/mmdet/retinanet/retinanet_r50_fpn_1x_coco.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,369 @@
_base_ = [
"../_base_/models/retinanet_r50_fpn.py",
"../_base_/datasets/coco_detection.py",
"../_base_/schedules/schedule_1x.py",
"../_base_/default_runtime.py",
"./retinanet_tta.py",
]

# optimizer
optim_wrapper = dict(optimizer=dict(type="SGD", lr=0.01, momentum=0.9, weight_decay=0.0001))
auto_scale_lr = dict(base_batch_size=16, enable=False)
backend_args = None
data_root = "data/coco/"
dataset_type = "CocoDataset"
default_hooks = dict(
checkpoint=dict(interval=1, type="CheckpointHook"),
logger=dict(interval=50, type="LoggerHook"),
param_scheduler=dict(type="ParamSchedulerHook"),
sampler_seed=dict(type="DistSamplerSeedHook"),
timer=dict(type="IterTimerHook"),
visualization=dict(type="DetVisualizationHook"),
)
default_scope = "mmdet"
env_cfg = dict(
cudnn_benchmark=False, dist_cfg=dict(backend="nccl"), mp_cfg=dict(mp_start_method="fork", opencv_num_threads=0)
)
img_scales = [
(
1333,
800,
),
(
666,
400,
),
(
2000,
1200,
),
]
load_from = None
log_level = "INFO"
log_processor = dict(by_epoch=True, type="LogProcessor", window_size=50)
model = dict(
backbone=dict(
depth=50,
frozen_stages=1,
init_cfg=dict(checkpoint="torchvision://resnet50", type="Pretrained"),
norm_cfg=dict(requires_grad=True, type="BN"),
norm_eval=True,
num_stages=4,
out_indices=(
0,
1,
2,
3,
),
style="pytorch",
type="ResNet",
),
bbox_head=dict(
anchor_generator=dict(
octave_base_scale=4,
ratios=[
0.5,
1.0,
2.0,
],
scales_per_octave=3,
strides=[
8,
16,
32,
64,
128,
],
type="AnchorGenerator",
),
bbox_coder=dict(
target_means=[
0.0,
0.0,
0.0,
0.0,
],
target_stds=[
1.0,
1.0,
1.0,
1.0,
],
type="DeltaXYWHBBoxCoder",
),
feat_channels=256,
in_channels=256,
loss_bbox=dict(loss_weight=1.0, type="L1Loss"),
loss_cls=dict(alpha=0.25, gamma=2.0, loss_weight=1.0, type="FocalLoss", use_sigmoid=True),
num_classes=80,
stacked_convs=4,
type="RetinaHead",
),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_size_divisor=32,
std=[
58.395,
57.12,
57.375,
],
type="DetDataPreprocessor",
),
neck=dict(
add_extra_convs="on_input",
in_channels=[
256,
512,
1024,
2048,
],
num_outs=5,
out_channels=256,
start_level=1,
type="FPN",
),
test_cfg=dict(
max_per_img=100, min_bbox_size=0, nms=dict(iou_threshold=0.5, type="nms"), nms_pre=1000, score_thr=0.05
),
train_cfg=dict(
allowed_border=-1,
assigner=dict(ignore_iof_thr=-1, min_pos_iou=0, neg_iou_thr=0.4, pos_iou_thr=0.5, type="MaxIoUAssigner"),
debug=False,
pos_weight=-1,
sampler=dict(type="PseudoSampler"),
),
type="RetinaNet",
)
optim_wrapper = dict(optimizer=dict(lr=0.01, momentum=0.9, type="SGD", weight_decay=0.0001), type="OptimWrapper")
param_scheduler = [
dict(begin=0, by_epoch=False, end=500, start_factor=0.001, type="LinearLR"),
dict(
begin=0,
by_epoch=True,
end=12,
gamma=0.1,
milestones=[
8,
11,
],
type="MultiStepLR",
),
]
resume = False
test_cfg = dict(type="TestLoop")
test_dataloader = dict(
batch_size=1,
dataset=dict(
ann_file="annotations/instances_val2017.json",
backend_args=None,
data_prefix=dict(img="val2017/"),
data_root="data/coco/",
pipeline=[
dict(backend_args=None, type="LoadImageFromFile"),
dict(
keep_ratio=True,
scale=(
1333,
800,
),
type="Resize",
),
dict(type="LoadAnnotations", with_bbox=True),
dict(
meta_keys=(
"img_id",
"img_path",
"ori_shape",
"img_shape",
"scale_factor",
),
type="PackDetInputs",
),
],
test_mode=True,
type="CocoDataset",
),
drop_last=False,
num_workers=2,
persistent_workers=True,
sampler=dict(shuffle=False, type="DefaultSampler"),
)
test_evaluator = dict(
ann_file="data/coco/annotations/instances_val2017.json",
backend_args=None,
format_only=False,
metric="bbox",
type="CocoMetric",
)
test_pipeline = [
dict(backend_args=None, type="LoadImageFromFile"),
dict(
keep_ratio=True,
scale=(
1333,
800,
),
type="Resize",
),
dict(type="LoadAnnotations", with_bbox=True),
dict(
meta_keys=(
"img_id",
"img_path",
"ori_shape",
"img_shape",
"scale_factor",
),
type="PackDetInputs",
),
]
train_cfg = dict(max_epochs=12, type="EpochBasedTrainLoop", val_interval=1)
train_dataloader = dict(
batch_sampler=dict(type="AspectRatioBatchSampler"),
batch_size=2,
dataset=dict(
ann_file="annotations/instances_train2017.json",
backend_args=None,
data_prefix=dict(img="train2017/"),
data_root="data/coco/",
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=[
dict(backend_args=None, type="LoadImageFromFile"),
dict(type="LoadAnnotations", with_bbox=True),
dict(
keep_ratio=True,
scale=(
1333,
800,
),
type="Resize",
),
dict(prob=0.5, type="RandomFlip"),
dict(type="PackDetInputs"),
],
type="CocoDataset",
),
num_workers=2,
persistent_workers=True,
sampler=dict(shuffle=True, type="DefaultSampler"),
)
train_pipeline = [
dict(backend_args=None, type="LoadImageFromFile"),
dict(type="LoadAnnotations", with_bbox=True),
dict(
keep_ratio=True,
scale=(
1333,
800,
),
type="Resize",
),
dict(prob=0.5, type="RandomFlip"),
dict(type="PackDetInputs"),
]
tta_model = dict(tta_cfg=dict(max_per_img=100, nms=dict(iou_threshold=0.5, type="nms")), type="DetTTAModel")
tta_pipeline = [
dict(backend_args=None, type="LoadImageFromFile"),
dict(
transforms=[
[
dict(
keep_ratio=True,
scale=(
1333,
800,
),
type="Resize",
),
dict(
keep_ratio=True,
scale=(
666,
400,
),
type="Resize",
),
dict(
keep_ratio=True,
scale=(
2000,
1200,
),
type="Resize",
),
],
[
dict(prob=1.0, type="RandomFlip"),
dict(prob=0.0, type="RandomFlip"),
],
[
dict(type="LoadAnnotations", with_bbox=True),
],
[
dict(
meta_keys=(
"img_id",
"img_path",
"ori_shape",
"img_shape",
"scale_factor",
"flip",
"flip_direction",
),
type="PackDetInputs",
),
],
],
type="TestTimeAug",
),
]
val_cfg = dict(type="ValLoop")
val_dataloader = dict(
batch_size=1,
dataset=dict(
ann_file="annotations/instances_val2017.json",
backend_args=None,
data_prefix=dict(img="val2017/"),
data_root="data/coco/",
pipeline=[
dict(backend_args=None, type="LoadImageFromFile"),
dict(
keep_ratio=True,
scale=(
1333,
800,
),
type="Resize",
),
dict(type="LoadAnnotations", with_bbox=True),
dict(
meta_keys=(
"img_id",
"img_path",
"ori_shape",
"img_shape",
"scale_factor",
),
type="PackDetInputs",
),
],
test_mode=True,
type="CocoDataset",
),
drop_last=False,
num_workers=2,
persistent_workers=True,
sampler=dict(shuffle=False, type="DefaultSampler"),
)
val_evaluator = dict(
ann_file="data/coco/annotations/instances_val2017.json",
backend_args=None,
format_only=False,
metric="bbox",
type="CocoMetric",
)
vis_backends = [
dict(type="LocalVisBackend"),
]
visualizer = dict(
name="visualizer",
type="DetLocalVisualizer",
vis_backends=[
dict(type="LocalVisBackend"),
],
)
Loading

0 comments on commit 68ad269

Please sign in to comment.