-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
24 changed files
with
1,390 additions
and
1,360 deletions.
There are no files selected for viewing
478 changes: 473 additions & 5 deletions
478
tests/data/models/mmdet/cascade_mask_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py
Large diffs are not rendered by default.
Oops, something went wrong.
379 changes: 369 additions & 10 deletions
379
tests/data/models/mmdet/retinanet/retinanet_r50_fpn_1x_coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,369 @@ | ||
_base_ = [ | ||
"../_base_/models/retinanet_r50_fpn.py", | ||
"../_base_/datasets/coco_detection.py", | ||
"../_base_/schedules/schedule_1x.py", | ||
"../_base_/default_runtime.py", | ||
"./retinanet_tta.py", | ||
] | ||
|
||
# optimizer | ||
optim_wrapper = dict(optimizer=dict(type="SGD", lr=0.01, momentum=0.9, weight_decay=0.0001)) | ||
auto_scale_lr = dict(base_batch_size=16, enable=False) | ||
backend_args = None | ||
data_root = "data/coco/" | ||
dataset_type = "CocoDataset" | ||
default_hooks = dict( | ||
checkpoint=dict(interval=1, type="CheckpointHook"), | ||
logger=dict(interval=50, type="LoggerHook"), | ||
param_scheduler=dict(type="ParamSchedulerHook"), | ||
sampler_seed=dict(type="DistSamplerSeedHook"), | ||
timer=dict(type="IterTimerHook"), | ||
visualization=dict(type="DetVisualizationHook"), | ||
) | ||
default_scope = "mmdet" | ||
env_cfg = dict( | ||
cudnn_benchmark=False, dist_cfg=dict(backend="nccl"), mp_cfg=dict(mp_start_method="fork", opencv_num_threads=0) | ||
) | ||
img_scales = [ | ||
( | ||
1333, | ||
800, | ||
), | ||
( | ||
666, | ||
400, | ||
), | ||
( | ||
2000, | ||
1200, | ||
), | ||
] | ||
load_from = None | ||
log_level = "INFO" | ||
log_processor = dict(by_epoch=True, type="LogProcessor", window_size=50) | ||
model = dict( | ||
backbone=dict( | ||
depth=50, | ||
frozen_stages=1, | ||
init_cfg=dict(checkpoint="torchvision://resnet50", type="Pretrained"), | ||
norm_cfg=dict(requires_grad=True, type="BN"), | ||
norm_eval=True, | ||
num_stages=4, | ||
out_indices=( | ||
0, | ||
1, | ||
2, | ||
3, | ||
), | ||
style="pytorch", | ||
type="ResNet", | ||
), | ||
bbox_head=dict( | ||
anchor_generator=dict( | ||
octave_base_scale=4, | ||
ratios=[ | ||
0.5, | ||
1.0, | ||
2.0, | ||
], | ||
scales_per_octave=3, | ||
strides=[ | ||
8, | ||
16, | ||
32, | ||
64, | ||
128, | ||
], | ||
type="AnchorGenerator", | ||
), | ||
bbox_coder=dict( | ||
target_means=[ | ||
0.0, | ||
0.0, | ||
0.0, | ||
0.0, | ||
], | ||
target_stds=[ | ||
1.0, | ||
1.0, | ||
1.0, | ||
1.0, | ||
], | ||
type="DeltaXYWHBBoxCoder", | ||
), | ||
feat_channels=256, | ||
in_channels=256, | ||
loss_bbox=dict(loss_weight=1.0, type="L1Loss"), | ||
loss_cls=dict(alpha=0.25, gamma=2.0, loss_weight=1.0, type="FocalLoss", use_sigmoid=True), | ||
num_classes=80, | ||
stacked_convs=4, | ||
type="RetinaHead", | ||
), | ||
data_preprocessor=dict( | ||
bgr_to_rgb=True, | ||
mean=[ | ||
123.675, | ||
116.28, | ||
103.53, | ||
], | ||
pad_size_divisor=32, | ||
std=[ | ||
58.395, | ||
57.12, | ||
57.375, | ||
], | ||
type="DetDataPreprocessor", | ||
), | ||
neck=dict( | ||
add_extra_convs="on_input", | ||
in_channels=[ | ||
256, | ||
512, | ||
1024, | ||
2048, | ||
], | ||
num_outs=5, | ||
out_channels=256, | ||
start_level=1, | ||
type="FPN", | ||
), | ||
test_cfg=dict( | ||
max_per_img=100, min_bbox_size=0, nms=dict(iou_threshold=0.5, type="nms"), nms_pre=1000, score_thr=0.05 | ||
), | ||
train_cfg=dict( | ||
allowed_border=-1, | ||
assigner=dict(ignore_iof_thr=-1, min_pos_iou=0, neg_iou_thr=0.4, pos_iou_thr=0.5, type="MaxIoUAssigner"), | ||
debug=False, | ||
pos_weight=-1, | ||
sampler=dict(type="PseudoSampler"), | ||
), | ||
type="RetinaNet", | ||
) | ||
optim_wrapper = dict(optimizer=dict(lr=0.01, momentum=0.9, type="SGD", weight_decay=0.0001), type="OptimWrapper") | ||
param_scheduler = [ | ||
dict(begin=0, by_epoch=False, end=500, start_factor=0.001, type="LinearLR"), | ||
dict( | ||
begin=0, | ||
by_epoch=True, | ||
end=12, | ||
gamma=0.1, | ||
milestones=[ | ||
8, | ||
11, | ||
], | ||
type="MultiStepLR", | ||
), | ||
] | ||
resume = False | ||
test_cfg = dict(type="TestLoop") | ||
test_dataloader = dict( | ||
batch_size=1, | ||
dataset=dict( | ||
ann_file="annotations/instances_val2017.json", | ||
backend_args=None, | ||
data_prefix=dict(img="val2017/"), | ||
data_root="data/coco/", | ||
pipeline=[ | ||
dict(backend_args=None, type="LoadImageFromFile"), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
1333, | ||
800, | ||
), | ||
type="Resize", | ||
), | ||
dict(type="LoadAnnotations", with_bbox=True), | ||
dict( | ||
meta_keys=( | ||
"img_id", | ||
"img_path", | ||
"ori_shape", | ||
"img_shape", | ||
"scale_factor", | ||
), | ||
type="PackDetInputs", | ||
), | ||
], | ||
test_mode=True, | ||
type="CocoDataset", | ||
), | ||
drop_last=False, | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(shuffle=False, type="DefaultSampler"), | ||
) | ||
test_evaluator = dict( | ||
ann_file="data/coco/annotations/instances_val2017.json", | ||
backend_args=None, | ||
format_only=False, | ||
metric="bbox", | ||
type="CocoMetric", | ||
) | ||
test_pipeline = [ | ||
dict(backend_args=None, type="LoadImageFromFile"), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
1333, | ||
800, | ||
), | ||
type="Resize", | ||
), | ||
dict(type="LoadAnnotations", with_bbox=True), | ||
dict( | ||
meta_keys=( | ||
"img_id", | ||
"img_path", | ||
"ori_shape", | ||
"img_shape", | ||
"scale_factor", | ||
), | ||
type="PackDetInputs", | ||
), | ||
] | ||
train_cfg = dict(max_epochs=12, type="EpochBasedTrainLoop", val_interval=1) | ||
train_dataloader = dict( | ||
batch_sampler=dict(type="AspectRatioBatchSampler"), | ||
batch_size=2, | ||
dataset=dict( | ||
ann_file="annotations/instances_train2017.json", | ||
backend_args=None, | ||
data_prefix=dict(img="train2017/"), | ||
data_root="data/coco/", | ||
filter_cfg=dict(filter_empty_gt=True, min_size=32), | ||
pipeline=[ | ||
dict(backend_args=None, type="LoadImageFromFile"), | ||
dict(type="LoadAnnotations", with_bbox=True), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
1333, | ||
800, | ||
), | ||
type="Resize", | ||
), | ||
dict(prob=0.5, type="RandomFlip"), | ||
dict(type="PackDetInputs"), | ||
], | ||
type="CocoDataset", | ||
), | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(shuffle=True, type="DefaultSampler"), | ||
) | ||
train_pipeline = [ | ||
dict(backend_args=None, type="LoadImageFromFile"), | ||
dict(type="LoadAnnotations", with_bbox=True), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
1333, | ||
800, | ||
), | ||
type="Resize", | ||
), | ||
dict(prob=0.5, type="RandomFlip"), | ||
dict(type="PackDetInputs"), | ||
] | ||
tta_model = dict(tta_cfg=dict(max_per_img=100, nms=dict(iou_threshold=0.5, type="nms")), type="DetTTAModel") | ||
tta_pipeline = [ | ||
dict(backend_args=None, type="LoadImageFromFile"), | ||
dict( | ||
transforms=[ | ||
[ | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
1333, | ||
800, | ||
), | ||
type="Resize", | ||
), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
666, | ||
400, | ||
), | ||
type="Resize", | ||
), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
2000, | ||
1200, | ||
), | ||
type="Resize", | ||
), | ||
], | ||
[ | ||
dict(prob=1.0, type="RandomFlip"), | ||
dict(prob=0.0, type="RandomFlip"), | ||
], | ||
[ | ||
dict(type="LoadAnnotations", with_bbox=True), | ||
], | ||
[ | ||
dict( | ||
meta_keys=( | ||
"img_id", | ||
"img_path", | ||
"ori_shape", | ||
"img_shape", | ||
"scale_factor", | ||
"flip", | ||
"flip_direction", | ||
), | ||
type="PackDetInputs", | ||
), | ||
], | ||
], | ||
type="TestTimeAug", | ||
), | ||
] | ||
val_cfg = dict(type="ValLoop") | ||
val_dataloader = dict( | ||
batch_size=1, | ||
dataset=dict( | ||
ann_file="annotations/instances_val2017.json", | ||
backend_args=None, | ||
data_prefix=dict(img="val2017/"), | ||
data_root="data/coco/", | ||
pipeline=[ | ||
dict(backend_args=None, type="LoadImageFromFile"), | ||
dict( | ||
keep_ratio=True, | ||
scale=( | ||
1333, | ||
800, | ||
), | ||
type="Resize", | ||
), | ||
dict(type="LoadAnnotations", with_bbox=True), | ||
dict( | ||
meta_keys=( | ||
"img_id", | ||
"img_path", | ||
"ori_shape", | ||
"img_shape", | ||
"scale_factor", | ||
), | ||
type="PackDetInputs", | ||
), | ||
], | ||
test_mode=True, | ||
type="CocoDataset", | ||
), | ||
drop_last=False, | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(shuffle=False, type="DefaultSampler"), | ||
) | ||
val_evaluator = dict( | ||
ann_file="data/coco/annotations/instances_val2017.json", | ||
backend_args=None, | ||
format_only=False, | ||
metric="bbox", | ||
type="CocoMetric", | ||
) | ||
vis_backends = [ | ||
dict(type="LocalVisBackend"), | ||
] | ||
visualizer = dict( | ||
name="visualizer", | ||
type="DetLocalVisualizer", | ||
vis_backends=[ | ||
dict(type="LocalVisBackend"), | ||
], | ||
) |
Oops, something went wrong.