Skip to content

AndresHG/TimeSeries-Spliter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TimeSeries-Spliter

An easy TimeSeries spliter into "size" batches.

Quick-start

You should have all your legitimate and DDoS TimeSeries stored in diferent folders. The format should looks like:

    <date>_<time>-<metric>-<granularity>

    Example:
        2018-03-29_18.06.20-difInput_OutputBytes-60000 

Software skills

  • Build a folder where you have all your granularities together (diferent folder eachone)

  • Store all metric folders inside the corresponding granularities

  • Finally, inside metric folders, all the TimeSeries will be saved inside "Legitimo" or "DDoS" folders.

Final dataset structure

Data should looks like:

    Granualrity1
    Granularity2
    Granularity2
        |
        - - - - metric1
                metric2
                metric3
                   |
                   - - -  timeserie1
                          timeserie2
                          timeserie3
                              .
                              .
                              .

Divide TimeSeries into specific size batches

Go to projects folder and fire up a terminal:

    python divider.py <dataset root folder> <size>
    
    Example:
    python divider.py /home/andres/dataset 150

*NOTE: "size" is the number of elements every new timeseries will have.

Separete TimeSeries into granularity and metrics

    If you want to build the whole structure:
  • First translate legitime TimeSeries
  • Seconda, convert DDoS TimeSeries
    python split.py <path to TS's folders> <"legitimo" / "ddos">
    
    Example:
        python split.py /home/andres/legitime_timeseries legitimo
        python split.py /home/andres/ddos_timeseries ddos

About

An easy TimeSeries spliter into "size" batches.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages