Skip to content

Commit

Permalink
Merge pull request #8 from lijianshe02/add_fid
Browse files Browse the repository at this point in the history
add dygraph fid score computation
  • Loading branch information
lijianshe02 authored Aug 20, 2020
2 parents 031e15f + db24279 commit ddbd89f
Show file tree
Hide file tree
Showing 4 changed files with 1,051 additions and 0 deletions.
10 changes: 10 additions & 0 deletions ppgan/metric/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
English (./README.md)

# Usage

To compute the FID score between two datasets, where images of each dataset are contained in an individual folder:

wget https://paddlegan.bj.bcebos.com/InceptionV3.pdparams
```
python test_fid_score.py --image_data_path1 /path/to/dataset1 --image_data_path2 /path/to/dataset2 --inference_model ./InceptionV3.pdparams
```
224 changes: 224 additions & 0 deletions ppgan/metric/compute_fid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import fnmatch
import numpy as np
import cv2
from cv2 import imread
from scipy import linalg
import paddle.fluid as fluid
from inception import InceptionV3
from paddle.fluid.dygraph.base import to_variable


def tqdm(x):
return x


""" based on https://github.com/mit-han-lab/gan-compression/blob/master/metric/fid_score.py
"""
"""
inceptionV3 pretrain model is convert from pytorch, pretrain_model url is https://paddle-gan-models.bj.bcebos.com/params_inceptionV3.tar.gz
"""


def _calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
m1 = np.atleast_1d(mu1)
m2 = np.atleast_1d(mu2)

sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)

assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'

diff = mu1 - mu2

t = sigma1.dot(sigma2)
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real

tr_covmean = np.trace(covmean)

return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) -
2 * tr_covmean)


def _get_activations_from_ims(img, model, batch_size, dims, use_gpu,
premodel_path):
n_batches = (len(img) + batch_size - 1) // batch_size
n_used_img = len(img)

pred_arr = np.empty((n_used_img, dims))

for i in tqdm(range(n_batches)):
start = i * batch_size
end = start + batch_size
if end > len(img):
end = len(img)
images = img[start:end]
if images.shape[1] != 3:
images = images.transpose((0, 3, 1, 2))
images /= 255

images = to_variable(images)
param_dict, _ = fluid.load_dygraph(premodel_path)
model.set_dict(param_dict)
model.eval()
pred = model(images)[0][0]
pred_arr[start:end] = pred.reshape(end - start, -1)

return pred_arr


def _compute_statistic_of_img(img, model, batch_size, dims, use_gpu,
premodel_path):
act = _get_activations_from_ims(img, model, batch_size, dims, use_gpu,
premodel_path)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma


def calculate_fid_given_img(img_fake,
img_real,
batch_size,
use_gpu,
dims,
premodel_path,
model=None):
assert os.path.exists(
premodel_path
), 'pretrain_model path {} is not exists! Please download it first'.format(
premodel_path)
if model is None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx])

m1, s1 = _compute_statistic_of_img(img_fake, model, batch_size, dims,
use_gpu, premodel_path)
m2, s2 = _compute_statistic_of_img(img_real, model, batch_size, dims,
use_gpu, premodel_path)

fid_value = _calculate_frechet_distance(m1, s1, m2, s2)
return fid_value


def _get_activations(files, model, batch_size, dims, use_gpu, premodel_path):
if len(files) % batch_size != 0:
print(('Warning: number of images is not a multiple of the '
'batch size. Some samples are going to be ignored.'))
if batch_size > len(files):
print(('Warning: batch size is bigger than the datasets size. '
'Setting batch size to datasets size'))
batch_size = len(files)

n_batches = len(files) // batch_size
n_used_imgs = n_batches * batch_size

pred_arr = np.empty((n_used_imgs, dims))
for i in tqdm(range(n_batches)):
start = i * batch_size
end = start + batch_size
images = np.array(
[imread(str(f)).astype(np.float32) for f in files[start:end]])

if len(images.shape) != 4:
images = imread(str(files[start]))
images = cv2.cvtColor(images, cv2.COLOR_BGR2GRAY)
images = np.array([images.astype(np.float32)])

images = images.transpose((0, 3, 1, 2))
images /= 255

images = to_variable(images)
param_dict, _ = fluid.load_dygraph(premodel_path)
model.set_dict(param_dict)
model.eval()

pred = model(images)[0][0].numpy()

pred_arr[start:end] = pred.reshape(end - start, -1)

return pred_arr


def _calculate_activation_statistics(files,
model,
premodel_path,
batch_size=50,
dims=2048,
use_gpu=False):
act = _get_activations(files, model, batch_size, dims, use_gpu,
premodel_path)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma


def _compute_statistics_of_path(path, model, batch_size, dims, use_gpu,
premodel_path):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
files = []
for root, dirnames, filenames in os.walk(path):
for filename in fnmatch.filter(
filenames, '*.jpg') or fnmatch.filter(filenames, '*.png'):
files.append(os.path.join(root, filename))
m, s = _calculate_activation_statistics(files, model, premodel_path,
batch_size, dims, use_gpu)
return m, s


def calculate_fid_given_paths(paths,
premodel_path,
batch_size,
use_gpu,
dims,
model=None):
assert os.path.exists(
premodel_path
), 'pretrain_model path {} is not exists! Please download it first'.format(
premodel_path)
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)

if model is None:
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx], class_dim=1008)

m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims,
use_gpu, premodel_path)
m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, dims,
use_gpu, premodel_path)

fid_value = _calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
Loading

0 comments on commit ddbd89f

Please sign in to comment.