Skip to content

Efficiently computes derivatives of numpy code.

License

Notifications You must be signed in to change notification settings

AntonioCoppola/autograd

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status

Autograd

Autograd can automatically differentiate native Python and Numpy code. It can handle a large subset of Python's features, including loops, ifs, recursion and closures, and it can even take derivatives of derivatives of derivatives. It uses reverse-mode differentiation (a.k.a. backpropagation), which means it can efficiently take gradients of scalar-valued functions with respect to array-valued arguments. The main intended application is gradient-based optimization. For more information, check out the tutorial and the examples directory.

Example use:

>>> import autograd.numpy as np  # Thinly-wrapped numpy
>>> from autograd import grad    # The only autograd function you may ever need
>>>
>>> def tanh(x):                 # Define a function
...     y = np.exp(-x)
...     return (1.0 - y)  / ( 1.0 + y)
... 
>>> grad_tanh = grad(tanh)       # Obtain its gradient function
>>> grad_tanh(1.0)               # Evaluate the gradient at x = 1.0
0.39322386648296376
>>> (tanh(1.0001) - tanh(0.9999)) / 0.0002  # Compare to finite differences
0.39322386636453377

We can continue to differentiate as many times as we like:

>>> grad_tanh_2 = grad(grad_tanh)           # 2nd derivative
>>> grad_tanh_3 = grad(grad_tanh_2)         # 3rd derivative
>>> grad_tanh_4 = grad(grad_tanh_3)         # etc.
>>> grad_tanh_5 = grad(grad_tanh_4)
>>> grad_tanh_6 = grad(grad_tanh_5)
>>>
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-7, 7, 200)
>>> plt.plot(x, map(tanh, x),
...          x, map(grad_tanh, x),
...          x, map(grad_tanh_2, x),
...          x, map(grad_tanh_3, x),
...          x, map(grad_tanh_4, x),
...          x, map(grad_tanh_5, x),
...          x, map(grad_tanh_6, x))
>>> plt.show()

Documentation

You can find a tutorial here.

End-to-end examples

How to install

Just run pip install autograd

Authors

Autograd was written by Dougal Maclaurin, David Duvenaud and Matt Johnson, and we're actively developing it. Please feel free to submit any bugs or feature requests. We'd also love to hear about your experiences with autograd in general. Drop us an email!

We want to thank Jasper Snoek and the rest of the HIPS group (led by Prof. Ryan P. Adams) for helpful contributions and advice; Barak Pearlmutter for foundational work on automatic differentiation and for guidance on our implementation; and Analog Devices International and Samsung Advanced Institute of Technology for their generous support.

About

Efficiently computes derivatives of numpy code.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%