Skip to content

Using Particle Swarm Optimization (PSO) for AI hyperparameter tuning and predictive analytics.

Notifications You must be signed in to change notification settings

AuradotAI/PSO-AI-Predictive-Analytics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

🧠 PSO for AI Hyperparameter Tuning & Predictive Analytics 🚀

📌 Project Overview

This project applies Particle Swarm Optimization (PSO) to optimize Support Vector Machine (SVM) hyperparameters, demonstrating the power of Swarm Intelligence in AI.

✅ Optimized AI models without brute-force search
✅ Achieved 100% accuracy on the Iris dataset
✅ Showcased decentralized decision-making in AI

🔬 Methodology

  • Dataset: Iris classification dataset 🌸
  • Optimization Target: SVM hyperparameters (C, Gamma)
  • Search Range:
    • C: [0.1, 100]
    • Gamma: [0.0001, 1]
  • Swarm Details: 20 particles, 30 iterations

📊 Results

  • Optimal Parameters Found:
    • C = 12.8346
    • Gamma = 0.6106
  • Achieved Accuracy: 100%

📂 Files in this Repository

  • swarm_ai_pso.py → Python implementation of PSO
  • PSO_Hyperparameter_Tuning_Report.pdf → Detailed experiment report
  • Enhanced_PSO_AI_Presentation_Light_Background.pptx → Presentation slides

🚀 Next Steps

  • Apply PSO for time-series forecasting 📈
  • Extend to multi-agent AI models
  • Optimize deep learning architectures using Swarm Intelligence

📌 Follow & Contribute: [Your GitHub Profile]
🔗 Read More About Swarm Intelligence: [Link to article]

About

Using Particle Swarm Optimization (PSO) for AI hyperparameter tuning and predictive analytics.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages