This project applies Particle Swarm Optimization (PSO) to optimize Support Vector Machine (SVM) hyperparameters, demonstrating the power of Swarm Intelligence in AI.
✅ Optimized AI models without brute-force search
✅ Achieved 100% accuracy on the Iris dataset
✅ Showcased decentralized decision-making in AI
- Dataset: Iris classification dataset 🌸
- Optimization Target: SVM hyperparameters (C, Gamma)
- Search Range:
- C:
[0.1, 100]
- Gamma:
[0.0001, 1]
- C:
- Swarm Details:
20 particles
,30 iterations
- Optimal Parameters Found:
- C =
12.8346
- Gamma =
0.6106
- C =
- Achieved Accuracy:
100%
swarm_ai_pso.py
→ Python implementation of PSOPSO_Hyperparameter_Tuning_Report.pdf
→ Detailed experiment reportEnhanced_PSO_AI_Presentation_Light_Background.pptx
→ Presentation slides
- Apply PSO for time-series forecasting 📈
- Extend to multi-agent AI models
- Optimize deep learning architectures using Swarm Intelligence
📌 Follow & Contribute: [Your GitHub Profile]
🔗 Read More About Swarm Intelligence: [Link to article]