-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Alexandre Sajus
committed
Sep 2, 2024
1 parent
b77e63a
commit a6ead29
Showing
2 changed files
with
191 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
import math | ||
import time | ||
from taipy import Gui | ||
from taipy.gui import invoke_long_callback | ||
import numpy as np | ||
import pandas as pd | ||
|
||
init_lat = 49.247 | ||
init_long = 1.377 | ||
|
||
factory_lat = 49.246 | ||
factory_long = 1.369 | ||
|
||
diff_lat = abs(init_lat - factory_lat) * 15 | ||
diff_long = abs(init_long - factory_long) * 15 | ||
|
||
lats_unique = np.arange(init_lat - diff_lat, init_lat + diff_lat, 0.001) | ||
longs_unique = np.arange(init_long - diff_long, init_long + diff_long, 0.001) | ||
|
||
countdown = 20 | ||
periods = 0 | ||
line_data = pd.DataFrame({"Time": [], "Max AQI": []}) | ||
|
||
drone_data = pd.DataFrame( | ||
{ | ||
"Drone ID": [43, 234, 32, 23, 5, 323, 12, 238, 21, 84], | ||
"Battery Level": [ | ||
"86%", | ||
"56%", | ||
"45%", | ||
"12%", | ||
"85%", | ||
"67%", | ||
"34%", | ||
"78%", | ||
"90%", | ||
"100%", | ||
], | ||
"AQI": [40, 34, 24, 22, 33, 45, 23, 34, 23, 34], | ||
"Status": [ | ||
"Moving", | ||
"Measuring", | ||
"Measuring", | ||
"Stopped", | ||
"Measuring", | ||
"Moving", | ||
"Moving", | ||
"Measuring", | ||
"Measuring", | ||
"Measuring", | ||
], | ||
} | ||
) | ||
|
||
|
||
def pollution(lat: float, long: float): | ||
""" | ||
Return pollution level in percentage | ||
Pollution should be centered around the factory | ||
Pollution should decrease with distance to factory | ||
Pollution should have an added random component | ||
Args: | ||
- lat: latitude | ||
- long: longitude | ||
Returns: | ||
- pollution level | ||
""" | ||
global countdown | ||
return 80 * (0.5 + 0.5 * math.sin(countdown / 20)) * math.exp( | ||
-(0.8 * (lat - factory_lat) ** 2 + 0.2 * (long - factory_long) ** 2) / 0.00005 | ||
) + np.random.randint(0, 50) | ||
|
||
|
||
layout_map = { | ||
"mapbox": { | ||
"style": "open-street-map", | ||
"center": {"lat": init_lat, "lon": init_long}, | ||
"zoom": 13, | ||
}, | ||
"dragmode": "false", | ||
"margin": {"l": 0, "r": 0, "b": 0, "t": 0}, | ||
} | ||
|
||
layout_line = { | ||
"title": "Max Measured AQI over Time", | ||
"yaxis": {"range": [0, 150]}, | ||
} | ||
|
||
lats = [] | ||
longs = [] | ||
pollutions = [] | ||
times = [] | ||
max_pollutions = [] | ||
|
||
for lat in lats_unique: | ||
for long in longs_unique: | ||
lats.append(lat) | ||
longs.append(long) | ||
pollutions.append(pollution(lat, long)) | ||
|
||
|
||
def iddle(): | ||
""" | ||
Only call an update every 3 seconds | ||
""" | ||
global countdown | ||
while True: | ||
time.sleep(3) | ||
countdown += 5 | ||
|
||
|
||
def on_init(state): | ||
""" | ||
Start the update loop | ||
""" | ||
invoke_long_callback(state, iddle, [], update, [], 2000) | ||
|
||
|
||
def update(state): | ||
""" | ||
Update the pollution levels | ||
""" | ||
for i in range(len(pollutions)): | ||
pollutions[i] = pollution(lats[i], longs[i]) | ||
state.data_province_displayed = pd.DataFrame( | ||
{ | ||
"Latitude": lats, | ||
"Longitude": longs, | ||
"Pollution": pollutions, | ||
} | ||
) | ||
state.pollutions = pollutions | ||
# Add an hour to the time | ||
state.periods = state.periods + 1 | ||
state.max_pollutions = state.max_pollutions + [max(pollutions)] | ||
state.times = pd.date_range( | ||
"2020-11-04", periods=len(state.max_pollutions), freq="H" | ||
) | ||
state.line_data = pd.DataFrame( | ||
{ | ||
"Time": state.times, | ||
"Max AQI": state.max_pollutions, | ||
} | ||
) | ||
|
||
|
||
data_province_displayed = pd.DataFrame( | ||
{ | ||
"Latitude": lats, | ||
"Longitude": longs, | ||
"Pollution": pollutions, | ||
} | ||
) | ||
|
||
options = { | ||
"opacity": 0.8, | ||
"colorscale": "Bluered", | ||
"zmin": 0, | ||
"zmax": 140, | ||
"colorbar": {"title": "AQI"}, | ||
"hoverinfo": "none", | ||
} | ||
config = {"scrollZoom": False, "displayModeBar": False} | ||
|
||
max_pollution = data_province_displayed["Pollution"].max() | ||
|
||
page = """ | ||
<|{data_province_displayed}|chart|type=densitymapbox|plot_config={config}|options={options}|lat=Latitude|lon=Longitude|layout={layout_map}|z=Pollution|mode=markers|class_name=map|height=40vh|> | ||
<|layout|columns=1 2 2| | ||
<|part|class_name=card| | ||
**Max Measured AQI:**<br/><br/><br/> | ||
<|{int(data_province_displayed["Pollution"].max())}|indicator|value={int(data_province_displayed["Pollution"].max())}|min=140|max=0|> | ||
<br/><br/> | ||
**Average Measured AQI:**<br/><br/><br/> | ||
<|{int(data_province_displayed["Pollution"].mean())}|indicator|value={int(data_province_displayed["Pollution"].mean())}|min=140|max=0|> | ||
|> | ||
<|part|class_name=card| | ||
<|{drone_data}|table|show_all=True|> | ||
|> | ||
<|part|class_name=card| | ||
<|{line_data[-30:]}|chart|type=lines|x=Time|y=Max AQI|layout={layout_line}|height=40vh|> | ||
|> | ||
|> | ||
""" | ||
|
||
Gui(page).run(use_reloader=True) |